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Background: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps
as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal
information.
Methods:Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time
sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and
542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpret-
ability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs.
Findings:Accuracies of 83·2%and 80·2%were obtained respectively for themulti-site pooling and leave-one-site-
out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two
group-discriminative timecourses,which is true evenwhenadoptingdifferent brain atlases to extract time series.
Interpretation: This is the first attempt to apply a multi-scale RNNmodel directly on fMRI time courses for classi-
fication of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications.
Fund: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of
Sciences, National Institutes of Health Grants, National Science Foundation.
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1. Introduction

Functional magnetic resonance imaging (fMRI), as a non-invasive
imaging technique, has been extensively applied to study psychiatric
National Laboratory of Pattern
Sciences, Beijing, 100190, China.
ui@nlpr.ia.ac.cn (J. Sui).

en access article under the CC BY-NC
disorders [1]. Due to the high-dimensional and low signal-to-noise
ratio properties of the fMRI data, efficient feature selection procedures
are usually required to reduce the redundancy before modeling. Two
types of approaches, data-driven [2] and seed-based [3], have been ex-
tensively applied to decompose 4D fMRI data, resulting in spatial brain
regions/independent components (ICs) and their corresponding time
courses (TCs). Currently, existing fMRI-based classification models
mostly adopt either subject-specific spatial maps [4] or functional
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Current fMRI-based classification approaches mostly use func-
tional connectivity or spatial maps as input, instead of exploring
the dynamic time courses directly, which does not leverage the
full temporal information. In addition, the excellent feature-
representation ability of deep learning methods provides us a
way to capture spatiotemporal information from time courses.

Added value of this study

In the present study, we contributed a new deep learning-based
frameworkwhich can directly work on fMRI time courses for iden-
tifying brain disorders. In addition, by using our proposed deep
learning-interpretation method, dorsal striatum and cerebellum
are discovered as the top two discriminative brain regions.

Implications of all the available evidence

To the best of our knowledge, this is the first attempt to enable
deep learning directly to work on time courses of fMRI compo-
nents in schizophrenia classification, which promise great poten-
tials of deep-chronnectome-learning and a broad utility on
neuroimaging applications, e.g., the extension to MEG, EEG
learning.
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(network) connectivity calculated by TC correlations as input features
[5,6], though have achieved substantial progress, the sequential tempo-
ral dynamics were generally missed. The field is still striving to under-
stand how to diagnose and discriminate complex mental illness, e.g.,
schizophrenia versus bipolar disorder, while ignoring the temporal in-
formation time-point by time-point is likely missing a critical, but avail-
able, part of the puzzle.

The power of deep learning models lies in enabling automatic dis-
covery of latent or abstract higher-level information from high-
dimensional neuroimaging data, which can be an important step to un-
derstand complex mental disorders [7–14]. Specifically, convolutional
neural network (CNN) which is “deep in space” and recurrent neural
network (RNN) which is “deep in time” are two classic deep learning
branches. It is natural to use CNN as an ‘encoder’ for obtaining correla-
tions between brain regions and simultaneously employ RNN for se-
quence classification. RNN models such as long short-term memory
(LSTM) [15] and gated recurrent unit (GRU) [16] have been firmly
established as state-of-the-art approaches in sequence modeling, such
as identifying autism using fMRI [17], diagnosing brain disorder by ana-
lyzing electroencephalograms [18], detecting temporally dynamic func-
tional state translations [13,14,19].

In particular, GRU is a particular RNN-based model which can ef-
fectively solve the long-term dependency problem by controlling in-
formation flow with several gates, which may fit the fMRI brain
voxel-wise changes along with time series. Moreover, multi-scale con-
volution layers can be complementary for CNN feature extraction, be-
cause it can account for different temporal scales (from seconds to
minutes) of brain activity. Therefore, we combine the strengths of
CNN and RNN models and develop a Multi-scale RNN (MsRNN)
model, which can directly work on fMRI time courses for classifying
brain disorders, thus avoids the second-level calculation (e.g., correla-
tion analysis) of time courses and takes advantage of the high-level
spatiotemporal information of fMRI data. Such a design of classifica-
tion framework relies on two assumptions: 1) underlying dynamics
of fMRI data, i.e., rules by which neural activities involved in time; 2)
brain disorders may have different patterns of temporal changes re-
corded by fMRI.
In this work, based on a large-scale Chinese Han resting-state fMRI
data consisting of 558 schizophrenia patients (SZ) and 542 healthy con-
trols (HC) that were recruited from seven sites with compatible MRI
scanning parameters and imaging quality, we tested the power of the
proposed MsRNN model for deep chronnectome learning on multiple
facets, with comparison of three classic classification algorithms and
eight varietal deep-learning models. Furthermore, to improve the
result's interpretability, which is the most challenging issue of deep
learning in neuroimaging applications, we propose a leave-one-IC-out
strategy for estimating the contribution of each IC on classifying schizo-
phrenia. Subsequently, components of dorsal striatum and cerebellum
contributed the top two group-discriminating time courses. Finally,
the time courses extracted by using seed-based strategies, e.g., using
brain atlases such as AAL [20] or Brainnetome Atlas [21], were com-
pared further with ICA results. To the best of our knowledge, this is
the first attempt to enable CNN + RNN directly to work on time
courses of fMRI components in mental disorder classification, which
promise great potentials of deep-chronnectome-learning and a broad
utility on neuroimaging applications, e.g., the extension to MEG, EEG
learning.

2. Materials and methods

Fig. 1 presents an overview framework of the MsRNN classification
method. Resting-state fMRI data from 1100 Chinese subjects (558 SZs,
542 HCs, from 7 sites) were used, which were preprocessed using the
standard procedure [6]. Details of the demographic information are
shown in Table S1. Time courses were extracted using group ICA [2].
Each subject was then represented with the TC features (No. time
points × No. ICs, Fig. 1a, c). The proposed MsRNN model was directly
applied on TCs of the selected non-artificial ICs to identify SZs from
HCs using two types of classification strategies (Fig. 1b): 1) Multi-site
pooling classification, in which all 1100 subjects from seven sites
were pooled together, which were split into training set, validation
set and testing set. Moreover, the classification performance was mea-
sured using k-fold cross-validation strategy; 2) Leave-one-site-out
transfer classification, in which the subjects of a given site were left
for testing, and the samples of all other sites were used for training
and validation. These two types of classification strategies were inde-
pendent of each other [9].We trained theMsRNN using the TCs in train-
ing and validation sets with their corresponding labels (Fig. 1c). The
learnable parameters of the MsRNN were iteratively adjusted using
the error backpropagation algorithm. The validation samples were si-
multaneously used for monitoring the training process and avoid
overfitting. The performance of the trained MsRNN was finally tested
using held out TCs.

2.1. Participants and demographics

Table S1 lists the demographic and clinical information of all 1100
participants (558 SZs and 542 age and gender-matched HCs) in this
study. The subjects were within the 18–45 age range, right-handed
whowere screened for ethical clearance, with only Chinese Han people
recruited from seven sites in Chinawith the same recruitment criterion,
including Peking University Sixth Hospital (Site 1); BeijingHuilongguan
Hospital (Site 2); Xinxiang Hospital Simens (Site 3); Xinxiang Hospital
GE (Site 4); Xijing Hospital (Site 5); Renmin Hospital ofWuhan Univer-
sity (Site 6); Zhumadian Psychiatric Hospital (Site 7). Each site received
approval from their respective research ethics boards and written in-
formed consents were obtained from all study participants. All the SZ
patients were evaluated based on the Structured Clinical Interview for
DSM disorders (SCID) and diagnosed by experienced psychiatrists ac-
cording to the criteria of DSM-IV-TR. All the HCs were recruited from
the same local geographical areas as the patients cohort through local
advertisement and were free of Axis I or II disorders (SCID-Nonpatient)
Additional exclusion criteria include factors such as current or past



Fig. 1. The framework of the Multi-scale RNN model in distinguishing schizophrenia patients from healthy controls. (a) Data preprocessing and feature selection. All rsfMRI data were
preprocessed using the standard procedure. Time courses were then extracted using group-ICA/AAL/Brainnetome Atlas respectively. (b) The TCs/FNC data were randomly split into
training, validation and testing sets. In multi-site pooling classification, all seven datasets were pooled together, and then k-fold cross-validation strategies were used for evaluating
classification performance. In leave-one-site-out transfer prediction, the samples of a given imaging site were left for testing, and the samples of other sites were used for training. The
performance of conventional methods (including Adaboost, Random Forest and SVM) and various RNN-based models were used for comparison. The most discriminative components
were found by using leave-one-IC-out method. (c) Details of the MsRNN classification model. Three different scales convolutional filters were used for extracting of spatial features
from time courses. The extracted features were then concatenated, pooling, and sent to stacked GRU module.
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neurological illness, substance abuse or dependence, pregnancy, and
prior electroconvulsive therapy or head injury resulting in loss of
consciousness.

2.2. Image acquisition

The resting state fMRI data were collected with the following three
different types of scanners: 3·0 T Siemens Trio Tim Scanner (Siemens;
Site 1, 2 & 5), 3·0 T Siemens Verio Scanner (Siemens; Site 3), and
3·0 T Signa HDx GE Scanner (General Electric; Site 4, 6 & 7). To ensure
equivalent, coincident and high-quality data acquisition, the scanning
protocols for all the seven siteswere set up by the same experienced ex-
perts [6]. Subjects were instructed to relax and lie still in the scanner
while remaining calm and awake. More details of scanning parameters
are listed in Supplementary Table S4.

2.3. Data preprocessing and IC extraction

The rsfMRI data were preprocessed according to the procedures
which were the same as we did in [6] using SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm/). For each participant, the first ten volumes
of each scan time series were discarded to ensure magnetization equi-
librium. The remaining resting state volumes were first corrected by
the acquisition time delay of different slices and then realigned to the
first volume for head-motion correction [22]. For each subject, the
translation of head motion was b3 mm and the rotation of headmotion
did not exceed 3° in all axes through the whole scanning process.
Subsequently, the images were spatially normalized to EPI template
conforming to the Montreal Neurological Institute (MNI) space. The
data (originally collected at 3·44 mm × 3·44 mm × 4·60 mm) were
then resliced to a voxel size of 3 mm × 3 mm × 3 mm, resulting in 53
× 63 × 46 voxels for each image. Subsequently, group ICA toolbox
(GIFT, http://mialab.mrn.org/software/gift) was used to perform GIG-
ICA [23] on the preprocessed fMRI data. 50 ICswere characterized as in-
trinsic connectivity networks (ICNs) after removing those ICs corre-
sponding to physiological, movement-related or imaging artifacts, and
their spatial maps (SMs) are listed in the Supplementary file Fig. S3.
According to previous work [24,25], the control of movement-related
artifacts should be stringent for the analysis of time courses of fMRI
data. We compared the mean of framewise displacement (FD) for
HC and SZ groups. The mean FD for HC and SZ are 0·137±0·071
and 0·142±0·085 respectively, with no significant group differences
(P=.98, two-sample t-tests)existing. Inourpreprocessing, asdid inpre-
vious work, nuisance covariates including six headmotion parameters,
mean FD, white matter signal, cerebrospinal fluid signal, and global
mean signal were all regressed out [24,26,27]. Two covariants (age
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and gender) which may have potential confounding effects were also
regressed out. Then the time courses were stacked to form a matrix
with dimensions of [No. Subjects] × [No. Time courses] × [No. Indepen-
dentcomponentsorROIs)]whichwas thenusedtocalculate theFNCma-
trix or to train theMsRNNmodel directly.

2.4. Multi-scale CNN-GRU (MsRNN)

As shown in Fig. 1c, MsRNN consists of 3 different scales of 1D
convolutional filters (2TR, 4TR and 8TR, TR = 2 s), one concatenation
layer, one max-pooling layer, a two-layer stacked gated recurrent unit
(GRU) which are densely connected in a feed-forward manner, and an
averaged layer which integrate the whole sequence. The time courses
were fed into the proposed MsRNN model for parameter optimization.
After optimizing the parameters, the model was saved for testing and
comparison. Equations are listed in the Supplementary files for a precise
definition of the MsRNN model.

2.4.1. Multi-scale convolutional layer
Multi-scale convolution layers may be helpful in feature extraction

because it can account for different scales (from seconds to minutes)
of brain activity. Inspired by 1D convolution (Conv1D) layers [28], we
designed an architecture which expands upon simple convolutional
layers by including multiple filters of varying sizes in each Conv1D
layer. This architecture allows the network to extract information over
multiple time scales. The filter lengths used in the Conv1D were
drawn from a logarithmic instead of a linear scale, leading to exponen-
tially varying filter lengths (2TR, 4TR, and 8TR). Therefore, the size of 3
different scales of convolutional filters are 50 (ICs) × 2 × 32 (number of
filters), 50 × 4 × 32, 50 × 8 × 32 in our experiment. A concatenation
layer then concatenates the incoming features among the depth axis,
resulting in featuremaps whose size are 170 (time points) ×96 (feature
dimension). Whereafter, a max-pooling layer performs downsampling
operation along the time dimensions with filter size 3, resulting in fea-
ture such as 57(time points) × 96(feature dimension).The
downsampled features are as the input of the following GRU layers.

2.4.2. Densely connected GRU layer
A two-layer stacked GRU may capture higher-level dynamic infor-

mation than single-layer GRU model. The size of the GRU's hidden
state was set as 32. However, one of the central challenges of training
a deep GRU-based network the gradient exploding/vanishing problem.
It is worthy to note that the densely-connected structure may effec-
tively prohibit the “gradient exploding/vanishing” problem by
connecting each layer to every other layer in a feed-forward manner
[29].

2.4.3. Averaged layer
Even with the best experimental fMRI design, it is infeasible to con-

trol the random thoughts of the subjects during the resting-state fMRI
scanning because they depend on too many subject-specific factors.
Also, it is not possible to label the beginning and the end of brain activ-
ities. Hence combining all fMRI steps by averaging all of theGRUoutputs
is a compromised solution [10]. In this way, all activities of the brain
during scanning may be leveraged for obtaining better classification
performance.

In summary, the proposed MsRNN classification model consists of
multiple-scale Conv1D layers, stacked GRU layers which are densely
connected in a feed-forward manner, an averaged layer which inte-
grates the context of the whole sequence, and fully-connected layers.
More details of the model can be found in Supplementary Fig. S2.

2.5. MsRNN model implementation

The time courses of ICs described above were used as the inputs
for training the Multi-scale RNN model. The model was trained by
minimizing the cross-entropy loss using Adam optimizer. The training
batch size was set as 64. The learning rate started from 0.001 and
decayed after each epoch with the decay rate of 10−210−2. To im-
prove the generalization performance of the model and overcome
overfitting, dropout(dropout = 0.5) and L1,2-norm regularization
(L1 = 0.0005,L2 = 0.0005) were also applied for regulating the
model parameters. The training process was stopped when the vali-
dation loss stopped decreasing for 50 epochs or when the maximum
epochs (1000 epochs) had been executed. In our experiment, the
training time for MsRNN was around five minutes, while the testing
time for a new subject is b0.01 s. The intermediate model which
achieved the highest accuracy on the validation dataset was reserved
for testing. Also, the proposed models were implemented on the
platform of Keras (https://keras.io/) and ScikitLearn (https://scikit-
learn.org/).

The visualization of MsRNN codes was performed by the unsuper-
vised dimensionality reduction technique t-SNE, which embeds high-
dimensional data into a low-dimensional space while preserving the
pairwise distances of the data points, implemented in MATLAB. The ac-
tivation strengths of individual neurons at the last hidden layer by the
training and testing sampleswere used as the rawvariables. The param-
eters for the stochastic optimization for t-SNE [30] were as follows [31]:
The perplexity was 30, and the dimension for initial principal compo-
nents analysis was 30.

2.6. Estimating the discriminative power of independent components
(leave-one-IC-out)

The basic idea is that the feature whose elimination lead to the
most significant damage of classification performance should be
regarded as the top contributing features. More specifically, as
shown in Fig. 3b, each subject is represented with a T × D matrix,
where T is the length of time courses and D is the number of indepen-
dent components (ICs). A specific element in the matrix can be de-
noted by vtd. To quantify the classification contribution of the dth IC,
we replace the time courses of dth IC with its averaged value
1
T
∑T

t¼1vtd while keep other ICs' time courses as they were. This is

equivalent to eliminating the contribution of dth component. All the
testing samples are processed in the same way and subsequently fed
to the trained MsRNN model. The classification performance of the
trained model which is fed with reduced features may decrease com-
pared to that using all features. The variation of the classification per-
formance (i.e., accuracy, sensitivity, specificity) when removing dth
dimension are recorded and sorted. The features which maximize
the decrease of the classification performance are further selected as
the most discriminative features. Specifically, the 1100 samples were
randomly split into five folds. 880 samples (four folds) were used
for optimizing the parameters of MsRNN, and 220 samples (one-
fold) were used for further finding the contribution of each IC during
each cross-validation. The specific procedures are as follow: 1) After
optimizing the trained model with 880 samples, the parameters of
the trained model were saved; 2) The time courses of 220 subjects
without removing any component were fed to the model to obtain a
baseline classification performance; 3) The 220 subjects which have
removed the contribution of one specific IC were fed to the model
to obtain the classification performance repeatedly. The decrease of
sensitivity/specificity when removing a specific component was re-
corded and sorted; 4) Repeat step 3 until each IC has been removed
once.

2.7. Statistics

The performance of identifying schizophrenia from normal controls
was evaluated by five metrics including accuracy (ACC), sensitivity
(SEN), specificity (SPE), F-score (F1) and area under curve (AUC)
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based on the results of cross-validation (k-fold or leave-one-site-out).
They are defined as below:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

; SEN ¼ TP
TP þ FN

; SPE ¼ TN
TN þ FP

;

PPV ¼ TP
TP þ FP

; F1 ¼ 2
SEN � PPV
SEN þ PPV

where TP, TN, FP, FN, PPV denote true positive, true negative, false pos-
itive, false negative and positive predictive value respectively, e.g., SEN
represents the percentage of SZ are classified as SZ correctly. The full
k-fold cross-validation procedure was repeated ten times to generate
themeans and standard deviations of accuracy, sensitivity, and specific-
ity. We used two-sample t-test to compare classification performances
between different algorithms and hyperparameter settings.

2.8. Data availability

All data needed to evaluate the conclusions are present in the paper
and/or the supplementary materials. Additional data related to this
paper may be requested from the authors.

3. Results

3.1. Multi-site pooling classification

We compared the MsRNN with three traditional popular classifiers
(SVM [32], Adaboost [33], Random Forest [34]), one multi-layer percep-
tion model, and seven RNN-based alternative deep learning models
(Table 1). The detailed hyperparameters and the time complexity of
these methods can be found in Supplementary Table S5. All the above
models were implemented on a desktop computer (Intel(R) Xeon
(R) CPU E5–1650 v4 @ 3.60GHz, 6 CPU cores) with a single GPU
(12GB NVIDIA GTX TITAN 12GB), and can be trained within five mi-
nutes. Note that the three conventional classification methods usually
work on the FNC matrix that was computed using the correlation of
TCs of selected components instead of the TCs themselves. Therefore,
in performance comparison, FNCs were used as the input of conven-
tional methods while TCs were used as the input of MsRNN, multi-
layer perception, and other RNN-based deep learning methods. All
models were trained using the training dataset and tested using testing
dataset, embedded in nested five-fold cross-validation cycles. Fig. 1c
shows the architecture of the proposedMsRNN model.

Table 1 and Fig. 2a listed the averaged accuracy and variance of clas-
sification performance achieved by all 11 methods in multi-site pooling
Table 1
Performance comparison in multi-site pooling classification.

Methods ACC SEN

CON Adaboost 75.6(3.8)** 77.0
CON Random Forest 76.0(3.5)** 81.0
CON SVM 79.4(3.1)* 80.4
RNN GRU_1_last 51.6(3.6)** 52.0
RNN GRU_1_ave 77.8(3.4)** 78.4
RNN GRU_2_ave 78.0(3.9)** 80.8
CMLP Multi_CNN_MLP 77.8(3.4)** 76.2
CRNN Simple_CNN_GRU_2_ave 80.8(3.0)○ 80.2
CRNN Multi_CNN_GRU_1_ave 80.6(3.5)○ 80.8
CRNN Multi_CNN_GRU_2_ave 81.2(3.4)○ 81.4
CRNN Multi_CNN_LSTM_2_ave 81.6(2.9)○ 82.6
CRNN MsRNN(Proposed) 83.2(3.2) 83.1

CON: conventional classification methods; RNN: RNN-based methods; CMLP: CNN linked with
with Gaussian kernel; LSTM: Long short-term memory network; GRU: gated recurrent unit.
GRU step is connected to the next layer. #_ave: the average of the outputs of all GRU steps is con
Convolutional layer has different kernel size;○ denotes that themethods have no significant di
are significantlyworse than the proposedmodelwith P value= .05/0.01. Details of all theseme
method.
condition. In the deep learning classification frameworks (including
MsRNN, multi-layer perception, and other RNN-based architectures),
we used four folds as the training set (10% samples of the training set
were further randomly selected as validation dataset), and one-fold as
the testing dataset. As for conventional classification models
(Adaboost, Random Forest and SVM), four folds were used for training
and one-fold for testing.

The accuracy of 83·2 ± 3·2% was obtained by using the MsRNN
method, which is significantly higher than those obtained by using the
Adaboost, Random Forest and SVM (P = 2·1e-4, 1·9e-4, 1.1e-2, two-
sample t-tests, df = 18). Also, the ROC curves of these methods are
shown in Fig. 2b. The proposed MsRNN achieved an AUC of 0.906,
while the AUC of Adaboost, Random Forest and SVM ranges from
0·840–0·868. To validate the advantage of the proposed model, other
RNN architectures based on GRU and one similar network architecture
based on LSTM were also compared with MsRNN. As shown in Table 1,
a single layer GRUmodel can easily reach a higher classification perfor-
mance than the classic FNC-based methods. The improvement may be
due to the ability of GRU in extracting dynamic information from time
sequences. In addition, the performance of GRU_1_ave is better than
GRU_1_last because the former one made full use of temporal informa-
tion at every time point. Furthermore, combining the GRU layer with
Conv1D layer is a remedy for improving the classification performance
because CNN-GRU model is “double deep” which include both spatial
and temporal layers. Thus it can be jointly trained to learn convolutional
perceptual representations and temporal dynamics simultaneously.

Finally, the proposed multi-scale convolution is even better than a
single-scale convolution layer because it can extract dynamics from a
variety of timescales. In summary, multi-site pooling results indicated
that our proposed MsRNN model achieved the best performance by
smartly integrating the advantages of CNN and RNN, while the LSTM-
based model can reach competitive performance compared with the
GRU-based model.

3.2. Leave-one-site-out transfer classification

In the leave-one-site-out classification,we left each of the seven sites
as the testing data and used the other six sites for training and valida-
tion, in which 10% samples were randomly selected as validation
dataset and the other 90% were used for trainingMsRNN or other deep
learning architectures. In the Adaboost, Random Forest and SVM classifi-
cation frameworks, we used the samples of the given imaging site for
testing and the samples of other sites for training. The leave-one-site-
out transfer classification results are shown in Table 2 and Table S2.
The averaged classification performance of the seven sites was used to
represent the overall performance of cross-site prediction. The accuracy
SPE F1 AUC

(4.4)** 74.2(4.4)** 76.2(3.8)** 84.2(3.6)**
(3.9)o 71.4(5.5)** 77.4(3.5)** 84.0(3.4)**
(3.5)o 78.4(3.9)* 79.6(3.3)* 86.8(3.2)*
(5.3)** 51.2(4.3)** 52.0(3.8)** 51.2(3.6)**
(3.8)** 77.0(3.5)** 78.2(3.4)** 86.8(3.5)*
(5.1)o 76.0(4.2)** 78.8(3.9)* 86.8(4.1)*
(4.0)** 79.2(4.8)○ 77.2(3.4)** 86.4(3.1)**
(4.3)○ 82.0(3.5)○ 80.8(3.1)○ 89.2(2.8)○
(4.1)○ 80.6(4.3)○ 80.8(3.3)○ 88.2(3.6)○
(4.1)○ 81.0(4.9)○ 81.0(3.5)○ 88.6(3.7)○
(3.6)○ 80.4(3.8)○ 82.0(2.7)○ 89.4(2.8)○
(3.7) 83.5(3.7) 83.3(3.2) 90.6(3.0)

multi-layer perception; CRNN: CNN-RNN based methods; SVM: Support vector machine
GRU_1: one layer of GRU; GRU_2: two-layer stacked GRU; #_last: the output of the last
nected to the next layer; SimpleCNN: Convolutional layer has fixed kernel size;Multi_CNN:
fference (two-sample t-test) with the proposed. */** denote respectively that themethods
ntioned architectures are shown in Supplementary file Fig. S2. The last row is our proposed



Fig. 2. Classification results of multi-site pooling and leave-one-site-out transfer classification. (a) 5-fold multi-site pooling classification results. ** P b .01(two-sample t-test), * P b .05
(two-sample t-test). (b) The comparison of receiver operating characteristic curves of different methods. (c) Leave-one-site-out transfer classification results. (d) t-SNE visualization of
the last hidden layer representation in the MsRNN for SZ/HC classification. Here we show the MsRNN's internal representation of SZ and HC by applying t-SNE, a method for visualizing
high-dimensional data, to the last hidden layer in the MsRNN of training (Site 1–6: 951 subjects) and testing (Site 7: 149 subjects) samples.
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of 80·2% was achieved by using theMsRNNmethod, which was signifi-
cantly higher than the accuracies obtained by using the Adaboost, Ran-
dom Forest and SVM (P = 6·2e-4, 7.0e-3, 1.9e-2, two-sample t-test, df
= 12) (Fig. 2c). To visualize the performance of MsRNN classifier, we
used t-Distributed Stochastic Neighbor Embedding (t-SNE) to project
the 32-dimensional representations of subjects extracted from the
Table 2
Performance comparison in leave-one-site-out classification.

Methods ACC SEN

CON Adaboost 72.9(3.0)** 76.6
CON Random Forest 72.6(4.4)** 79.6
CON SVM 76.0(3.1)* 80.0
RNN GRU_1_last 47.7(3.2)** 50.6
RNN GRU_1_ave 78.7(2.8)○ 80.9
RNN GRU_2_ave 77.9(3.9)○ 79.0
CMLP Multi_CNN_MLP 76.1(3.2)* 79.7
CRNN Simple_CNN_GRU_2_ave 79.1(3.7)○ 82.4
CRNN Multi_CNN_GRU_1_ave 80.3(3.0)○ 82.9
CRNN Multi_CNN_GRU_2_ave 79.7(3.0)○ 80.4
CRNN Multi_CNN_LSTM_2_ave 78.7(3.9)○ 83.1
CRNN MsRNN(Proposed) 80.2(3.0) 82.5

CON: conventional classification methods; RNN: RNN-based methods; CMLP: CNN linked with
with Gaussian kernel; LSTM: Long short-term memory network; GRU: gated recurrent unit.
GRU step is connected to the next layer. #_ave: the average of the outputs of all GRU steps is con
Convolutional layer has different kernel size; Details of all thesementioned architectures are sh
methods have no significant difference (two-sample t-test) with the proposed. */** denote res
0.01.
hidden layer of the trained MsRNN model to a 2D plane. As shown in
Fig. 2d, samples from six sites (951 subjects, site 1–6) were used as
the training/validation set, and the samples from site 7 (149 subjects)
were used for testing. The tSNE result indicates that the proposed
MsRNN model can successfully distill features and separate the SZ and
HC apart.
SPE F1 AUC

(7.4)○ 70.1(6.7)* 73.7(2.8)** 81.3(2.4)**
(8.9)○ 66.7(10.7○ 74.3(3.2)** 82.7(3.6)**
(7.5)○ 73.3(9.5)○ 77.4(2.2)* 85.0(2.9)*
(6.8)** 44.7(7.1)** 49.3(3.7)** 46.7(2.4)**
(7.3)○ 77.4(7.4)○ 79.4(1.9)○ 86.9(2.3)*
(9.2)○ 77.9(7.5)○ 78.1(2.7)○ 87.7(3.0)○
(8.2)○ 73.4(9.8)○ 77.0(2.1)** 85.4(2.7)*
(7.9)○ 76.7(10.7)○ 80.1(2.3)○ 89.1(2.3)○
(7.3)○ 79.0(9.4)○ 81.1(1.8)○ 88.7(2.3)○
(7.2)○ 79.6(7.7)○ 79.9(2.7)○ 88.6(2.3)○
(8.3)○ 75.3(9.7)○ 79.7(2.6)○ 89.6(3.0)○
(7.7) 79.0(8.4) 80.8(2.0) 89.4(2.1)

multi-layer perception; CRNN: CNN-RNN based methods; SVM: Support vector machine
GRU_1: one layer of GRU; GRU_2: two-layer stacked GRU; #_last: the output of the last
nected to the next layer; SimpleCNN: Convolutional layer has fixed kernel size;Multi_CNN:
own in Supplementary file Fig. S2. The last row is our proposedmethod.○ denotes that the
pectively that the methods are significantly worse than the proposed model with P =.05/
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3.3. Comparison of TC-extracting strategies

Besides using ICA to extract TCs, we further tested the performance
of the MsRNN by using TCs obtained from brain parcellation using
both AAL template and Brainnetome Atlas, where the TCs of each
brain regions of interests (ROI) were calculated by averaging the
voxel-wise time series within each ROI. The dimension of TCs for AAL
atlas is 170(time points) × 116(ROIs) andª 170(time points) × 273
(ROIs) for Brainnetome Atlas. MsRNN models were separately trained
and evaluated, as shown in Fig. 3a and Table S3, the TCs generated
from ICA achieved the best performance, surpassing the AAL feature ex-
traction strategies by at least 7% on AUC (P = 3·0e-2, two-sample t-
test). This is likely due to the ability of ICA to capture variability in the
components among subjects and is also consistent with earlier work
showing that ICA time courses show better performance than fixed
ROIs for graph theory metrics [35].

3.4. Estimating the most discriminating ICs

The ultimate goal of fMRI classification studies is to identify a collec-
tion of statistical features that can serve as reliable imaging biomarkers
for disease diagnosis and are reproducible across multiple datasets. De-
spite extraordinary classification performance, the lack of interpretabil-
ity often restricts the application of deep learning methods. Some
previouswork tried to open the black box of deep learning by analyzing
the weight matrix of the trained model [9,12]. Generally speaking, the
most important features are those whose removal can cause the most
significant performance decrease compared to other features. Here we
Fig. 3. Comparison of different atlas and Leave-One-IC-Out method. (a) The MsRNN classificat
(b) Leave-one-IC-out method for estimating the contribution of each IC. (c) Top two discrimin
proposed a leave-one-IC-out method to leave one IC's time course out,
and used the remaining 49 ICs' time course to train the model. After
that, we compared the alteration of classification performances by
looping all 50 ICs (shown in Fig. 3b). As a result, TCs from two compo-
nents: 1) putamen and caudate which are parts of striatum; 2) declive
and uvula which are parts of the cerebellum (Fig. 3c), contributed the
top 2 group-discriminating time courses. Table 3 listed the Talairach la-
bels of the two components. Note that similar findings of the most
group-discriminating ROIs were obtained from both AAL and
Brainnetome atlas.

4. Discussion

As known, the current clinical diagnosis of schizophrenia is based
solely on clinical manifestations. In recent years, many studies
attempted to find stable neuroimaging-based biomarkers by machine
learning techniques. To the best of our knowledge, this is the first at-
tempt to apply an RNNmodel directly on fMRI time courses for schizo-
phrenia diagnosis, which avoids second-level correlation analysis and
make full use of time-varying functional network information. Accura-
cies of 83·2% and 80·2% were obtained in the multi-site pooling classi-
fication and leave-one-site-out transfer prediction between
schizophrenia patients and healthy controls respectively, yielding 4%
improvement of accuracy compared to conventional approaches, sug-
gesting a remarkable increase of the discriminative power via deep
learning in neuroimaging predictions. The promising results may bene-
fit from the following two aspects: 1) the proposed MsRNN can learn
both temporal and spatial information simultaneously based on time
ion results using three different feature selection methods. * P b .05 (two-sample t-test).
ative independent components discovered using the leave-one-IC-out method.



Table 3
Talairach labels of the peak activations in spatial maps of selected ICs.

Area Brodmann
area

Volume
(cc)

Random effects: Max Value (x, y, z)

IC_4
Putamen 4.2/4.9 1.4 (−24, 12, 15)/1.4 (29, −8, 14)
Lentiform nucleus 1.6/1.3 1.4 (−28, −17, 13)/1.4 (14, −1, −2)
Parahippocampal
Gyrus

34 0.8/0.8 1.4 (−23, −8, −16)/1.4 (32, −10, −13)

Claustrum 0.8/1.0 1.4 (−36, −13, 2)/1.4 (34, 1, 9)
Inferior Frontal
Gyrus

13, 47 0.6/0.1 1.4 (−32, 10, −15)/1.4 (30, 13, −12)

Caudate 1.7/1.8 1.4 (−11, 17, 7)/1.4 (16, −8, 19)
IC_2

Declive 2.9/3.0 1.9 (−27,−71, −22)/1.9 (21, −71,−22)
Uvula 0.5/0.8 1.6 (−27, −71, −25)/1.8 (24, −71, 24)
Pyramis 0.0/0.1 NA/1.6 (27, −71, −27)
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courses rather than the second-level FNC features. Specifically, the
multi-scale CNN module can capture the spatial correlation of compo-
nents fromdifferent time scales (2TR~8TR), and the RNNmodule can le-
verage temporal information; 2) the large-scale dataset (1100 subjects)
provide us the opportunity to train the deep learningmodel sufficiently.
From this view of point, the present studymaymark a significant break-
through for enhancing the capabilities of psychiatrists by bringing RNN-
based deep learning method to the task of diagnosing brain disorders
across sites. Such applications would be critical and useful in clinical
practice to predict for the new imaging sites or subjects.We also noticed
a recently published multi-center study using deep learning method to
diagnose schizophrenia [9]. The deep discriminant autoencoder net-
work proposed by Zeng et al., aiming at learning imaging site-shared
functional connectivity features, achieved desirable discrimination of
schizophrenia across multiple independent imaging sites. To clarify,
the current study used an entirely different deep learning architecture
(AutoEncoder [Zeng et al.] vs. MsRNN [ours]) and different input fea-
tures for classification (functional connectivity [Zeng et al.] vs. time
courses [ours]), which avoid the second-level computation of fMRI data.

As to the identified brain regions, the dominating component is re-
lated to the dorsal striatum in the classification of schizophrenia. The
dorsal striatum, comprising caudate and putamen, primarily mediates
cognition involvingmotor function, certain executive functions (e.g., in-
hibitory control), and stimulus-response learning. It receives input from
cortex, thalamus, hippocampus and amygdala, then projects its output
information to thalamus. The thalamus, which projects back to the cor-
tex, thereby completing the circuit is also a component of the reward
system that may suffer severely in SZ [36–38]. A similar impairment in
SZ was verified inmultiple resting-state fMRI studies [39] and cognitive
studies [40]. For example, Yoon et al. [41] observed a link between im-
paired prefrontal-basal ganglia functional connectivity and the severity
of psychosis, and Sarpal et al. [42] found a negative relationship be-
tween the functional connectivity of striatal regions and reduction in
psychosis.

Another cerebellum component consist of declive, uvula and
pyramis. The cerebellum is engaged in basic cognitive function such as
attention,workingmemory, verbal learning and sensory discrimination,
has led to an emerging interest in the role of the cerebellum in schizo-
phrenia [43]. Structural and functional cerebellar abnormalities have
been observed in schizophrenia, with evidence the impairment in
whitematter integrity in specific cerebellar lobes [44], aswell as the ab-
normal size and a significant decrease in cerebral blood flow during a
broad range of cognitive tasks [43,45]. Besides, researchers have posited
the role of the cerebellum in reinforcement learning, allowing for more
direct convergence between the theories of cognitive dysmetria and im-
paired reinforcement learning in schizophrenia [46].

Across several studies, altered connectivity patterns between the
striatum and cerebellum have been frequently found in schizophrenia.
Abnormalities in the relationship between cortical and sub-cortical re-
gions, in particular, the prefrontal cortex, thalamus, basal ganglia, and
cerebellum, were observed in patients with schizophrenia and corre-
lated primarily with deficits in executive functioning, as well as deficits
in processing speed andworkingmemory [45]. Su et al. [47] and Repovs
et al. [48] provided evidence that the connectivity strength between
cerebellum and caudate is associated with executive functioning loss
in schizophrenia. Also, reduced functional connectivity between the
cerebellum andmedial dorsal nucleus of the thalamus in schizophrenia
providing evidence of abnormalities in this portion of the cortico-
cerebellar-thalamic-cortico circuit [9,12,45,49]. Our results suggest
that the temporal dynamics in the two identified brain regions and
their connectivity are highly different between HC and SZ, which may
serve as potential biomarkers for SZ discrimination.

The proposed model is stable and robust. Fig. S1 shows the learning
curves on training and validation data while optimizing the parameters
of MsRNN. The model convergent quickly during the first 100 epochs
and reached a steady point after around 300 epochs. Since the number
of hidden nodes in GRU layer may directly affect the learning capacity
of a GRU model., we compared the performance of MsRNN model with
a varying number of hidden units (i.e. [21, 22, 23 …, 210]) to validate
the influence of the number of hidden notes in GRU layer. The statistical
results indicate that our proposed model is not sensitive to the number
of hidden units (Fig. S1b). The model can reach an over 80% classifica-
tion accuracy with a range of 23~29 GRU hidden nodes. More
hyperparameters about MsRNN including batch size, number of filters,
scales of filters were analyzed thoroughly (Table S6-S8). The results
show that the proposed MsRNNmodel is quite robust and not sensitive
to these hyperparameters. Moreover, the hyperparameters combina-
tion we used in this work is close to an optimal solution. We also com-
pared the influence ofmultiple training-testing ratios (Table S9), results
show that the higher training-testing ratio is, the better performance
MsRNN model achieves, which is consistent with the previous finding
[9], suggesting further potential improvement of our proposed method
when gathering more samples for modeling. Finally, to study the influ-
ence of the number of ICs, we further compared four different ICA com-
ponent settings (Table S10). The two-sample t-test results show that
only when the number of ICs is 16, the classification accuracy is less at-
tractive than using 50 ICs(proposed), however, usingmore ICs does not
show significant improvement, andmany previous studies use a similar
number of ICs as we did [50,51].

The current study has a few limitations. One is that information on
antipsychotic or mood stabilizing medications for part of the patients
were unavailable, which makes it difficult to assess the medication ef-
fect that may result in specific functional changes [6]. Secondly, the
time courses were filtered within the range of 0·01–0·1HZ during the
preprocessing step. However, the discriminative functional activity in
the human brain may occur in a higher frequency range. Since the pro-
posed MsRNN model can be applied to classify using either
magnetoencephalogram (MEG) or electroencephalography (EEG) data
due to its feasibility to higher temporal resolution data [6], therefore, a
more stable and generative deep learning classification model may be
designed by fusing multi-modalities to extract fused features and
apply them to the RNN classification model in the future [52]. Another
limitation is that even though headmotion effect has been substantially
attenuated through preprocessing procedures, it may not be completely
removed and may remain certain influences. Moreover, the fMRI data
acquisition protocols for all sites were set up by the same experienced
experts and more harmonized in our study. Therefore the classification
performance of the proposed model may be weighted down a bit if the
data acquisition protocols in new sites are very different from each
other. We admit that the proposed MsRNN model is still a preliminary
model which did not give each hidden state a specific weight. One com-
plementary strategy which may enhance GRU's performance is “atten-
tion” mechanism that can learn the weight of each hidden state
automatically [53]. Furthermore, interpretation of deep learning net-
works remains an emerging but key field of research, our future work
will focus more on a better interpretation of deep learning results,
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which would provide us with more clues on identifying potential
biomarkers.

In summary, to the best of our knowledge, this is the first attempt to
enable RNN directly to work on time courses of fMRI components in
schizophrenia classification. The model takes advantage of high-level
spatiotemporal information of fMRI data, and the high classificationper-
formances indicate the advantages of the proposedmodel. Also, thepro-
posed leave-one-IC-out strategy provides a potential solution for
increasing the clinical interpretability of the deep learning-based
methods. Our work promises great potentials of deep-chronnectome-
learning and a broad utility on neuroimaging applications, e.g., the ex-
tension to MEG, EEG learning.
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a b s t r a c t 

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can 

be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) 

and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal 

dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. 

Both features have been used as input to deep learning approaches with decent results. However, few 

studies have tried to leverage their complementary information to learn optimal representations at mul- 

tiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Con- 

nectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) 

and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultane- 

ously. Specifically, C-RNN 

AM was proposed to extract temporal dynamic dependencies with an attention 

module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to 

identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, 

both prediction outputs were concatenated to build a new feature matrix, generating the final decision 

by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n 

∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% 

accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable 

classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More 

importantly, the most group-discriminative brain regions can be easily attributed and visualized, provid- 

ing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA 

model in the identification of valid neuroimaging biomarkers. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Functional magnetic resonance imaging (fMRI) has been a 

romising tool to provide novel insights into the brain function 

bnormalities of psychotic disorders ( Andreou, 2020 ). Based on 

ultivariate decomposition such as independent component anal- 

sis (ICA) ( Du and Fan, 2013 ), useful imaging features such as 

ndependent components (ICs), their corresponding time courses 
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TCs) and functional network connectivity (FNC) ( Calhoun and 

dali, 2006 ; Jafri et al., 2008 ; Smith et al., 2009 ) can be easily ex-

racted and widely used in studies of mental disorders ( Fig. 1 A). 

pecifically, TCs reflect the temporal fluctuations of each IC, i.e. , 

he spatially distinct brain regions, while FNC characterizes the 

emporal coherence across the selected ICs by correlating their 

Cs, representing the intrinsic connectivity networks ( Calhoun and 

dali, 2012 ; Seeley et al., 2007 ; Supekar et al., 2009 ). Both fea-

ures have been widely used in brain disorder comparison and 

lassification. 

On the other hand, with the ability to characterize discrim- 

native patterns and learn optimal representations automatically 

rom neuroimaging data, deep learning (DL) methods have re- 

eived growing attention in fMRI-based diagnosis of mental disor- 

https://doi.org/10.1016/j.media.2022.102413
http://www.ScienceDirect.com
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Fig. 1. The framework of the proposed HDLFCA in psychotic disorder classification. (A) Data preprocessing and Feature extraction. TCs was obtained by decomposing fMRI 

data using GIG-ICA, and FNCs was estimated from the TCs. (B) Overview of our proposed HDLFCA. C-RNN 

AM and DNN were used to characterize temporal dynamics in TCs 

and learn functional dependency between brain regions respectively. Then their predictions were concatenated to build a new feature matrix, generating the final decision 

by logistic regression. For model interpretability, attention module and layer-wise relevance propagation (LRP) were applied to identify the most discriminative ICs and FNC 

patterns respectively. (C) Details of the C-RNN 

AM . It consists of an attention module, multiple 1D convolutional (Conv1D) layers, one concatenation and max pooling layer, 

two gated recurrent unit (GRU) layers and a fully connected layer. The purple frame shows the scheme of the attention module, which is trainable along with other modules. 

The greater the weight of the attention map, the more important the component was. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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ers. One of the most commonly used DL input features is func- 

ional (network) connectivity calculated based on either a brain 

tlas or ICA ( Du et al., 2018 ). For example, Kim et al. trained a

eep neural network (DNN) based on FNC, with L1-norm to mon- 

tor weight sparsity, achieved substantial performance improve- 

ent ( Kim et al., 2016 ). Zeng et al. presented a sparse autoencoder

o learn imaging site-shared FCs, which was then used to guide 

VM training on multi-site datasets for schizophrenia (SZ) diag- 
2 
osis ( Zeng et al., 2018 ). Similarly, in order to exploit the wealth

f temporal dynamic information in BOLD signals, recurrent neu- 

al networks (RNN)-based approaches have also been proposed to 

ork on fMRI time series. Particularly, Yan et al. proposed multi- 

cale RNN on the TCs ( Yan et al., 2017 ) and Dakka et al. adopted

 recurrent convolutional neural network (R-CNN) on 4-D fMRI 

ecordings at the whole-brain voxel level ( Dakka et al., 2017 ) to 

istinguish patients with SZ from healthy controls (HCs). Moreover, 
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Table 1 

Demographic information of datasets. 

Mean ±SD SZ HC P -value 

Number 558 542 NA 

Age 27.6 ±7.1 28.0 ±7.2 0.06 

Gender(M/F) 292/266 276/266 1.96 

PANSS positive 23.9 ±4.2 NA NA 

PANSS negative 20.1 ±5.9 NA NA 

PANSS general 39.7 ±7.2 NA NA 

PANSS total 83.6 ±12.3 NA NA 

Notes: P -value: the significance value of two sample t-test. NA: not applicable. 
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m
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t

ynamic FNC (dFNC) has also been adopted with or without com- 

ining with static FNCs to discriminate brain disorders, which can 

urther improve prediction accuracy ( Cetin et al., 2016 ; Du et al., 

017 ; Rashid et al., 2016 ). 

However, despite the significant advances in fMRI-based classi- 

cation, the complementary information between spatial-temporal 

oherence (FNC) and temporal dynamics of brain activity (TCs) 

ave not been fully leveraged to take advantage of fMRI data. 

o our knowledge, there are no deep models yet combining both 

unctional connectivity and activity as input features. To address 

his issue, we are motivated to propose a Hybrid Deep Learning 

ramework integrating brain Connectivity and Activity (HDLFCA) 

ogether by combining DNN and C-RNN (convolutional recurrent 

eural network), aiming to enhance the classification performance 

or brain disorders by capitalizing on multi-domain neuroimaging 

nformation. The prediction outputs of the two neural networks 

ere then concatenated to build a new feature matrix, generating 

he final decision by logistic regression ( Fig. 1 B). 

Another point that needs to mention is the lack of interpretabil- 

ty of DL methods, which often limited their use in clinical con- 

exts due to the ‘black-box’ nature of deep layers ( Kohoutová et al., 

020 ). To this end, the attention mechanism, inspired by human 

erception, was developed to improve the interpretability of DL 

odels, and has been employed in various medical imaging data 

ining cases. For instance, Lian et al. developed an attention- 

uided DL framework for dementia diagnosis ( Lian et al., 2020 ), 

ncluding a full CNN to localize the discriminative regions and a 

ybrid network to fuse multi-level spatial information. Similarly, 

in et al. proposed an attention-based 3D CNN for Alzheimer’s dis- 

ase diagnosis ( Jin et al., 2020 ). However, most existing attention- 

uided DL studies focused on structural images such as structural 

RI (sMRI) and Computed Tomography (CT) ( Chen et al., 2020 ; 

ong et al., 2019 ; Lei et al., 2020 ), less attention has been paid

o fMRI data due to its higher dimensionality. In this work, we 

ropose two schemes to improve the interpretability: 1) to de- 

elop an attention-guided C-RNN for TCs, i.e., C-RNN 

AM , which en- 

bles learning of temporal dynamics and identification of the most 

iscriminative TC nodes (ICs) integrated into a unified framework 

 Fig. 1 C). 2) In parallel, layer-wise relevance propagation (LRP) was 

pplied to DNN layers, searching for the most discriminative FNC 

atterns. Taken together, the most contributing fMRI features for 

roup discrimination were identified and visualized, improving the 

hole model interpretability. 

To validate the effectiveness of our proposed method, HDLFCA, 

igorous comparisons have been made with 12 popular meth- 

ds. Specifically, we compared with 8 alternative models based on 

tatic FNC or TCs and 4 DL methods using dynamic FNC, which 

lso characterized functional connectivity and dynamics of BOLD 

ignals simultaneously. These tests were performed using In-House 

ulti-site dataset (558 SZ and 541 HCs) and public ABIDE datasets 

743 ASD and 779 HCs). Experimental results showed our method 

utperformed 12 alternative models by 2.8-8.9%, achieving SZ-HC 

lassification accuracy at 85.1% and 81.0% for the multi-site pooling 

nd leave-one-site-out respectively, and 72.4% for ABIDE dataset 

ith multi-site pooling. More importantly, the most group discrim- 

native brain regions can be easily traced back with convincing bi- 

logical interpretability, suggesting the great promise of HDLFCA to 

dentify potential imaging biomarkers. 

. Materials and methods 

.1.Participants 

For In-House dataset, participants (558 schizophrenia patients 

nd 542 HCs) were recruited from 7 hospitals, including Peking 

niversity Sixth Hospital (PKU6), Beijing Huilongguan Hospital 
3 
HLG), Xinxiang Hospital Simens (XX#1), Xinxiang Hospital GE 

XX#2), Xijing Hospital (XJ), Renmin Hospital of Wuhan University 

RWU) and Zhumadian Psychiatric Hospital (ZMD). Demographic 

nd clinical information of subjects were listed in Table 1 and Table 

1. All patients with SZ are diagnosed by experienced psychiatrists 

sing the Structured Clinical Interview for DSM-IV-TR Disorders. 

ll HCs are interviewed using the SCID-Non-Patient Version and 

xcluded if their first-degree relatives had any psychotic disorders. 

esides, none of the participants had neurological disorders, sub- 

tance abuse or dependence, pregnancy, and prior electroconvul- 

ive therapy or head injury resulting in loss of consciousness. The 

everity of positive and negative symptoms was assessed accord- 

ng to PANSS scores. Two sample t-test and Chi-square test were 

erformed to measure the difference of age and gender between 

Cs and patients respectively. This study has been approved by 

he ethical committees and all subjects provided written informed 

onsent, including permission to share data between centers. 

For public ABIDE dataset (743 patients with ASD and 779 HCs), 

he detailed demographic information of datasets was listed in Ta- 

le S14. 

.2. Image acquisition 

For all sites in In-House datasets, scanning parameters are as 

ollows: repetition time (TR) = 20 0 0 ms; echo time (TE) = 30 

s; flip angle (FA) = 90 °; field of view (FOV) = 220 × 220mm; 

atrix = 64 × 64; slice thickness = 4 mm; gap = 0.6 mm; 

lices = 33. The resting-state fMRI data were collected on a 3T Tim 

rio scanner (Siemens) in PKU6, HLG and XJ sites, Verio scanner 

Siemens) in XX#1 site, 3T Signa HDx GE scanner (General Elec- 

ric) in the other sites. Subjects were instructed to lie still, keep 

heir eyes closed, stay awake, and minimize head movement with 

oam padding and earplugs. Details of all sites were listed in Table 

2. 

.3. Data preprocessing 

All resting-state fMRI data were preprocessed with the same 

rocedures as we did in Liu et al. (2019 ) using the SPM software

ackage ( http://www.fil.ion.ucl.ac.uk/spm/ ). The first ten volumes 

f each scan time series were discarded for magnetization equi- 

ibrium. The following processing pipeline was then performed: 1) 

lice timing correction to the middle slice; 2) motion correction to 

he first image; 3) normalization into the standard Montreal Neu- 

ological Institute (MNI) space, and resliced to 3 ×3 ×3 mm; 4) de- 

oising and spatially smoothing using an 8 mm full width half max 

FWHM) Gaussian kernel. 

To control the effects of motion artifacts, each subject has been 

valuated with a maximum displacement that did not exceed ±
 mm (translation) or ± 3 ° (rotation). The group difference in the 

ean framewise displacement (FD) between HC and SZ groups was 

ot significant (HC: 0.137 ± 0.071, SZ: 0.142 ± 0.085, two-sample 

-test: p = 0.98). 

http://www.fil.ion.ucl.ac.uk/spm/
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.4. Feature extraction 

Imaging data were decomposed into spatial functional networks 

nd back-reconstructed using Group-guided independent compo- 

ent analysis (GIG-ICA) ( Calhoun et al., 2001 ; Du et al., 2016 ;

u and Fan, 2013 ; Du et al., 2020 ) in the GIFT software ( http:

/trendscenter.org/software/gift ). We chose a high model order ICA 

number of components = 100) to decompose the functional net- 

orks showing temporally coherent activity as our previous work 

 Luo et al., 2020 ; Zhi et al., 2018 ). For subject-level data, 150 prin-

ipal components were retained by principal component analy- 

is (PCA). For group-level data, acquired by concatenating subject 

ata across time, 100 principal components were retained using 

CA again. Afterward, the Infomax ICA algorithm was repeated 20 

imes using ICASSO followed by selection of the most represen- 

ative result, to improve the reliability of the decomposition, re- 

ulting in 100 stable group ICs ( Du et al., 2014 ; Yan et al., 2021 ).

0 ICs were further selected and characterized as intrinsic con- 

ectivity networks, which showed higher low-frequency spectral 

ower and presented minimal overlap with white matter, ventri- 

les, and edge regions ( Allen et al., 2011 ). The 50 spatial maps are

orted into eight domains as listed in Fig. S1. Furthermore, subject- 

pecific time courses and spatial maps were back-reconstructed us- 

ng GIG-ICA ( Du et al., 2016 ; Du and Fan, 2013 ). The following addi-

ional post-processing steps were performed on the selected com- 

onent TCs: linear, quadratic and cubic detrending, regressing out 

ix realignment parameters and their temporal derivatives, despik- 

ng, and low-pass filtering ( < 0.15 Hz). 

As shown in Fig. 1 , the subject-level TCs with a size of 50 ×170

ICs × time points) are used as the input of the RNN-based model. 

earson’s correlation between TCs of each pair of ICs was calcu- 

ated, yielding a symmetric connectivity matrix of 50 ×50. The FNC 

atrix was further reshaped into a vector with a dimension of 

50 × 49)/2 = 1225 using the upper triangle elements, which were 

sed as input features of DNN. 

.5. Methods 

.5.1. Hybrid deep learning framework integrating brain connectivity 

nd activity (HDLFCA) 

As shown in Fig. 1 B, we proposed a Hybrid Deep Learning 

ramework integrating brain Connectivity and Activity (HDLFCA) to 

nhance the performance for brain disorder classification by taking 

dvantage of both temporal coherence and dynamic neuroimaging 

nformation. In the first stage, different DL models were designed 

o characterize heterogeneous features and leverage complemen- 

ary information between TCs and FNC. Specifically, we used the 

-RNN 

AM to capture time-varying fluctuations in fMRI time se- 

ies, with the attention module integrated to automatically extract 

he most discriminative TCs. Meanwhile, we used DNN to learn 

unctional interaction between ICs, where LRP was performed to 

dentify the most group-discriminative FNC patterns. In the second 

tage, the outputs from the above two models were concatenated 

o create a new feature matrix to train a logic regression, whose 

utput is the final decision. 10-fold cross-validation was conducted 

o evaluate the performance of models. The implementation details 

ere depicted in section 2.6. 

.5.2. Convolutional recurrent neural network with attention module 

C-RNN 

AM ) 

1) Overview: As shown in Fig. 1 C, the C-RNN 

AM network consists 

f an attention module, three 1D convolutional layers with differ- 

nt kernel sizes, one concatenation layer, one max pooling layer, 

wo gated recurrent unit (GRU) layers, and a fully connected layer. 

he processed TCs were fed to the C-RNN 

AM network to gener- 
4 
te the intermediate prediction P 1 ∈ R N×1 , where N is the number 

f training samples. 

Although RNN has great power in sequence modeling, it is still 

hallenging for it to deal with high dimension spatiotemporal fMRI 

ata with lots of redundant information. To solve this problem, we 

rst used Conv1D layers as an ‘encoder’ to learn correlations be- 

ween brain regions, followed by max-pooling layer. The Conv1D 

ayers extract local information from neighboring time points in 

he space dimension and the pooling layer downsample data in 

he time dimension ( Roy et al., 2019 ; Yan et al., 2019 ). Consid-

ring the brain dynamics at different timescales can capture dis- 

inct aspects of human behavior ( Liegeois et al., 2019 ), we ex- 

anded simple convolution layers by applying multiple Conv1D 

ayers with different kernel sizes so that the next stage would ag- 

regate dynamic brain activity from multiple time scales simulta- 

eously. Since the filter lengths vary exponentially rather than lin- 

arly ( Szegedy et al., 2015 ), we set the size of three convolutional

lters as 32 ×2 ×50 (number of filters × time scales × ICs), 16 ×4 

50 and 16 ×8 ×50, resulting in three feature maps with a size of 

70 ×32 (time scales × ICs ×number of filters), 170 ×16 and 170 ×16 

espectively. A concatenation layer was followed to integrate fea- 

ures with different time scales. Furthermore, a max-pooling layer 

as performed to downsample along the time axis with 3 ×1 ker- 

el size, resulting in 56 ×64 features (time points ×feature dimen- 

ion) as the input of GRU layers. 

Considering the brain activity is characterized by long-range 

emporal dependence such that signal fluctuations at the present 

ime influence signal dynamics up to several minutes in the future 

 Dhamala et al., 2020 ; Guclu and van Gerven, 2017 ), while con-

entional RNNs often fail to learn long-term dependencies due to 

he gradient exploding and vanishing problems during the back- 

ropagation ( Bengio et al., 1994 ). Therefore, we proposed to uti- 

ize GRU layers to learn useful representations of brain activity pat- 

erns, which can mitigate the gradients problem by controlling in- 

ormation flow with gating mechanisms ( Roy et al., 2019 ). In this 

tudy, two GRU layers were stacked in the HDLFCA to capture both 

hort- and long-term dependencies in BOLD time series. It is worth 

oting that each GRU layer was densely connected to the other 

RU layers to mitigate the degradation problem, which provided 

hort-cut paths during back-propagation ( Huang et al., 2017 ). The 

ize of hidden states units was set as 32. To make full use of brain

ctivity throughout the scan, the GRU outputs were further aver- 

ged, and two fully-connected layers were followed to give the in- 

ermediate prediction, which was then concatenated for the final 

ecision. 

2) Attention Module: The attention module was proposed to in- 

rease representation power and improve interpretability by focus- 

ng on important brain regions and suppress unnecessary ones. The 

chematic of attention module is illustrated in Fig. 1 C. Given the 

reviously processed TCs X ∈ R 170 ×50 as input, where 170 and 50 

re the number of time points and ICs, the attention module gen- 

rated an attention map M(X ) ∈ R 50 ×1 ×1 . The attention process can 

e defined as follows: 

 

′ = B (M(X )) � X 

here � denotes element-wise multiplication and B (·) denotes 

roadcast operations : the attention values M(X ) was copied along 

ime dimension accordingly and then reshaped into the same size 

ith X ′ is the refined feature. 

To construct the attention module, TCs inputs were reshaped 

nto a matrix of size 50 ×1 ×170. The average-pooling calculates the 

ean value of all elements in the pooling region, and may re- 

uce the contrast of the new feature map, while max-pooling only 

ses the maximum element and ignores the others, which may 

e useful for classification tasks ( Yu et al., 2014 ). Therefore, we 

dopted both of these along the time axis to learn temporal statis- 

http://trendscenter.org/software/gift
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ics and aggregate temporal information fully ( Woo et al., 2018 ). 

fter that, two temporal context descriptors: F max and F avg , which 

enote max-pooled features and average-pooled features respec- 

ively, were generated and were concatenated to produce an effi- 

ient feature descriptor. We applied a convolution layer and sig- 

oid activation to produce an attention map. Note that the size 

f filter is 50 ×1, which has the same dimension as the number of 

Cs rather than a smaller size to extract global relations among ICs. 

nd the number of filters is 50, each of them was responsible for 

earning the importance of one IC. Integrated in the unified frame- 

ork, the attention map tells ‘which region’ is an informative part, 

amely, the greater the weight of the attention map, the higher the 

iscrimination power of the brain region. To sum up, the attention 

odule can be denoted as follows: 

 ( X ) = σ ( conv ( [ AvgP ool ( X ) ; MaxP ool ( X ) ] ) ) 

= σ (con v ( F a v g ; F max )) 

here σ is the sigmoid function. 

.5.3. Deep neural network (DNN) 

Given the FNC as input, the deep neural network was applied 

o learn high-level hierarchical feature representation and give the 

ntermediate prediction P 2 ∈ R N×1 . DNN was composed of one in- 

ut layer, two hidden layers, and one output layer. The size of hid- 

en notes was set 32 and 16 respectively. L 2 norm regularization 

nd dropout strategies were used to avoid overfitting as reported 

n ( Srivastava et al., 2014 ). 

Based on the trained models, LRP was introduced to identify 

mportant FNC patterns for classification decisions, and it decom- 

osed the prediction of DNN over a test sample down to rele- 

ance scores for the single input dimensions such as each FNC 

ere. Supposing there arelayers in total, the relevance of output 

euron can be obtained in a feed-forward fashion: R 1 
(M) = f (x ) . 

− rule was performed to compute the propagation of relevance 

rom layer l + 1 to layer l

 

(l ,l +1) 
i ← j 

= 

(
(1 + β) 

z + 
i j 

z + 
j 

− β
z −

i j 

z −
j 

)
R 

(l+1) 
j 

 i j = x i w i j , z 
+ 
j 

= 

∑ 

i 
z + 

i j 
+ b + 

j 
, z −

j 
= 

∑ 

i 
z −

i j 
+ b −

j 

here z + 
i j 

and z −
i j 

denotes positive and negative activations respec- 

ively. b + 
j 

and b −
j 

denote the positive and negative part of the bias 

tem b j . R 
(l+1) 
j 

and R (l ,l +1) 
i ← j 

denotes the relevance of a neuron jat layer 

 + 1 , and message between neurons i at the layer l and neurons

at layer l + 1 respectively. β controls how much inhibition is in- 

orporated into the relevance redistribution. Then the relevance of 

 neuron i at layer l was defined by summing messages from neu- 

ons at layer l + 1 : 

 

(l) 
i 

= 

∑ 

j∈ (l+1) 

R 

(l ,l +1) 
i ← j 

Therefore, the relevance score R d 
(1) of each FNC was determined 

y this rule. For more details on LRP, please refer to ( Bach et al.,

015 ). 

.6. Implementation details 

The HDLFCA was implemented via nested cross-validation us- 

ng the Keras package ( https://keras.io/ ). In each one of the 10 fold

xperiment, the 3-fold cross-validation was performed further to 

void overfitting. Specifically, training data was divided into three 

olds further in the training stage, where two folds were used for 

raining and validation, and the remaining one was used for pre- 

iction. After 3-fold cross-validation, predictions from three DNN 
5 
odels were concatenated to constitute intermediate prediction P1 

nd so does C-RNN 

AM to generate P2, which were used for the final 

ecision. In the testing stage, the outputs of three DNN models and 

hree C-RNN models were first averaged respectively, then two pre- 

ictions were concatenated to build the final decision by logistic 

egression. The procedures of the training and testing phase were 

llustrated in Fig. S4. An implementation for HDLFCA is available at 

ttps://github.com/minzhaoCASIA/HDLFCA . 

The C-RNN model was trained by the Adam optimizer with 

n initial learning rate of 0.001 and decayed with the rate of 

.01. Dropout (0.5) and L 1,2 -norm regularization (L1 = 0.0 0 01, 

2 = 0.0 0 01) were performed to control weight sparsity. The batch 

ize was set at 64. The DNN model was trained with the cross- 

ntropy loss by the Adam optimizer with an initial learning rate 

f 0.001. The performance of methods was evaluated by five met- 

ics including accuracy (ACC), specificity (SPE), sensitivity (SEN), 

1-score (F1) and area under the receiver operating characteris- 

ic curve (AUC). The performance of different algorithms was com- 

ared via a two-sample t-test. 

. Results 

.1. Multi-site pooling classification 

Ten-fold multi-site pooling experiments were conducted to 

valuate classification performance, where fMRI data from all sites 

ere pooled together and ten-fold cross-validation was performed. 

ll experiments were repeated 10 times to generate mean and 

tandard deviations of metrics. We compare HDLFCA with eight 

ompeting methods on both In-House and ABIDE datasets. The 

uantitative results in the task of classification are reported in 

able 2 , Table 3 and Fig. 2 . 

As shown in Fig. 2 , first , the HDLFCA reported a mean classifica-

ion accuracy of 85.3% and 72.4% on In-House and ABIDE datasets, 

ndicating a significant improvement over the other classical clas- 

ifiers (p < 0.01). For instance, HDLFCA achieved an improvement 

f 8.9%, 8.3% and 3.8% in ACC compared with Random Forest, Ad- 

Boost and SVM, respectively on In-House datasets. This implied 

he significant effectiveness of learning high-level, “deep” features 

rom fMRI data. Second , compared with BrainNetCNN, DNN, C- 

NN and C-RNN 

AM that adopted features of either FNC or TC 

nly, the proposed HDLFCA that exploits complementary informa- 

ion between them led to a better diagnostic performance on two 

atasets. For example, in terms of ACC, an improvement of 5.2%, 

.4%, 2.8% and 1.8% was achieved on HC-SZ datasets respectively, 

nd an improvement of 3.9%, 2.0%, 3.3% and 3.0% was achieved 

or ABIDE datasets, suggesting the necessity and validity of inte- 

rating functional dependency between brain regions and tempo- 

al dynamics of brain activity. Third , the comparative performance 

f C-RNN 

AM and C-RNN in SZ classification showed that C-RNN 

AM 

chieved an improvement of about 1% in terms of ACC, SPE, SEN 

nd F1 values, demonstrating that incorporation of discriminative 

C localization and disease classification into a unified framework 

oosts the final performance. It should be noted that although the 

ttention module identified the discriminative ICs as well as im- 

roved performance, it did not cause an increase in model com- 

lexity. Forth , our HDLFCA outperformed the connectivity-based 

raph convolutional network (cGCN) ( Wang et al., 2021 ) signifi- 

antly on two datasets as well, which also used TCs and FCs to 

xtract similar connectome features. 

Furthermore, to validate the generalizability of HDLFCA, we re- 

roduce the experiments based on TCs obtained from Automated 

natomical Labeling (AAL) template instead of ICA, where the 

ean regional TCs were calculated by averaging the voxel-wise 

MRI time series in each of brain regions of interests (ROI). Pear- 

on’s correlation between TCs of each pair of ROIs was calcu- 

https://keras.io/
https://github.com/minzhaoCASIA/HDLFCA
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Table 2 

Performance comparison in multi-site pooling classification on In-House schizophrenia datasets. 

Methods Feature ACC SPE SEN F1 AUC 

RF FNC 76.4 ±0.8 ∗∗ 72.3 ±1.8 ∗∗ 80.4 ±0.5 ∗∗ 77.6 ± 0.5 ∗∗ 84.6 ±0.2 ∗∗

AdaBoost FNC 77.0 ±0.2 ∗∗ 75.6 ±0.2 ∗∗ 78.3 ±0.3 ∗∗ 77.6 ± 0.2 ∗∗ 81.8 ±0.3 ∗∗

SVM FNC 81.5 ±0.3 ∗∗ 80.0 ±0.8 ∗∗ 83.0 ±0.5 ∗∗ 82.6 ±0.2 ∗∗ 88.4 ±0.2 ∗∗

BrainNetCNN FNC 80.1 ±0.8 ∗∗ 77.2 ±1.5 ∗∗ 82.9 ±1.2 ∗∗ 80.1 ±0.9 ∗∗ 87.7 ±0.5 ∗∗

DNN FNC 80.9 ±0.4 ∗∗ 80.6 ±1.2 ∗∗ 81.3 ±0.7 ∗∗ 81.3 ±0.4 ∗∗ 88.8 ±0.3 ∗∗

C-RNN TCs 82.5 ±0.9 ∗∗ 80.8 ±1.1 ∗∗ 84.2 ±0.9 ∗∗ 83.1 ±0.8 ∗∗ 90.8 ±0.4 ∗∗

C-RNN 

AM TCs 83.5 ±0.5 ∗∗ 81.5 ±0.9 ∗∗ 85.4 ±0.5 ∗∗ 84.0 ±0.5 ∗∗ 91.4 ±0.3 ∗∗

cGCN FNC + TCs 78.3 ±0.6 ∗∗ 77.2 ±1.2 ∗∗ 78.6 ±1.1 ∗∗ 78.4 ±0.8 ∗∗ 81.2 ±0.5 ∗∗

HDLFCA FNC + TCs 85.3 ±0.4 83.4 ±0.6 87.1 ±0.5 85.8 ±0.3 92.4 ±0.2 

Notes: RF: random forest. ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance than the listed 

ones, with P value = 0.05/0.01. 

Table 3 

Performance comparison in multi-site pooling classification on HC-ASD using ABIDE sites. 

Methods Feature ACC SPE SEN F1 AUC 

RF FNC 67.2 ±0.6 ∗∗ 63.7 ±0.5 ∗∗ 70.5 ±0.8 ∗∗ 68.6 ±0.6 ∗∗ 72.8 ±0.4 ∗∗

AdaBoost FNC 64.2 ±0.1 ∗∗ 62.0 ±0.1 ∗∗ 66.2 ±0.2 ∗∗ 65.3 ±0.1 ∗∗ 66.7 ±0.2 ∗∗

SVM FNC 69.5 ±0.1 ∗∗ 66.4 ±0.2 ∗∗ 72.4 ±0.2 ∗∗ 70.7 ±0.2 ∗∗ 76.6 ±0.2 ∗∗

BrainNetCNN FNC 68.5 ±0.6 ∗∗ 63.4 ±2.1 ∗∗ 73.1 ±1.9 ∗∗ 70.5 ±0.8 ∗∗ 75.1 ±0.6 ∗∗

DNN FNC 70.4 ±0.6 ∗∗ 68.2 ±1.4 ∗∗ 72.5 ±0.9 ∗∗ 71.4 ±0.6 ∗∗ 76.5 ±0.6 ∗∗

C-RNN TCs 69.1 ±0.5 ∗∗ 67.6 ±1.2 ∗∗ 70.6 ±0.7 ∗∗ 70.0 ±0.4 ∗∗ 76.1 ±0.4 ∗∗

C-RNN 

AM TCs 69.4 ±0.5 ∗∗ 67.1 ±0.8 ∗∗ 71.5 ±0.7 ∗∗ 70.4 ±0.5 ∗∗ 76.0 ±0.6 ∗∗

cGCN FNC + TCs 67.5 ±0.6 ∗∗ 60.0 ±1.1 ∗∗ 72.2 ±0.7 ∗∗ 69.1 ±0.5 ∗∗ 72.8 ±0.6 ∗∗

HDLFCA FNC + TCs 72.4 ±0.6 70.5 ±0.9 74.2 ±1.0 73.2 ±0.6 79.2 ±0.3 

Notes: ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance than the listed ones, with P 

value = 0.05/0.01. 

Fig. 2. The classification results of (A) multi-site pooling classification in in-house SZ datasets, (B) multi-site pooling classification in public ABIDE datasets, (C) multi-site 

pooling classification based on TCs or FNCs extracted by AAL atlas in in-house SZ datasets, and (D) leave-one-site-out classification in HC-SZ datasets. ∗/ ∗∗ denote that the 

proposed HDLFCA method achieves significantly better performance than the listed ones, with P value = 0.05/0.01. 

6 
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Table 4 

Performance comparison in leave-one-site-out classification between HC and SZ. 

Methods Feature ACC SPE SEN F1 AUC 

RF FNC 71.4 ±4.4 ∗∗ 65.1 ±12 ∗∗ 79.1 ±8.1 73.5 ±4.0 ∗ 82.1 ±3.5 ∗∗

AdaBoost FNC 74.8 ±2.5 ∗∗ 74.1 ±6.7 ∗∗ 75.7 ±4.7 75.1 ±3.3 ∗ 82.1 ±2.6 ∗∗

SVM FNC 77.2 ±3.6 ∗ 76.6 ±9.7 ∗∗ 78.5 ±6.5 77.6 ±4.0 85.5 ±4.4 ∗∗

BrainNetCNN FNC 75.8 ±3.8 ∗ 77.5 ±9.5 ∗∗ 75.8 ±6.3 76.5 ±3.2 85.1 ±4.2 ∗∗

DNN FNC 76.8 ±3.1 ∗ 76.2 ±9.0 ∗∗ 77.8 ±5.7 77.8 ±3.7 85.0 ±4.0 ∗∗

C-RNN TCs 77.6 ±1.9 ∗ 77.9 ±8.1 ∗∗ 77.1 ±9.3 77.3 ±4.2 86.5 ±2.4 ∗∗

C-RNN 

AM TCs 78.9 ±2.1 80.0 ±6.5 ∗ 77.9 ±7.8 77.8 ±3.0 87.2 ±2.1 ∗

cGCN FNC + TCs 75.1 ±3.2 ∗ 76.5 ±9.0 ∗∗ 74.4 ±5.6 75.5 ±3.2 ∗ 83.1 ±4.1 ∗∗

HDLFCA FNC + TCs 81.5 ±2.2 87.5 ±6.0 75.1 ±5.8 80.3 ±1.7 90.2 ±2.4 

Note: ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance than the listed ones, with P 

value = 0.05/0.01. 
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ated, yielding a symmetric connectivity matrix of 116 ×116. The 

esults were reported in Table S5 and Fig. 2 C. We can draw a sim-

lar conclusion as above. Particularly, HDLFCA outperformed sin- 

le feature-based deep learning models (i.e., DNN, C-RNN and C- 

NN 

AM ) largely, demonstrating the superiority of utilizing comple- 

entary information between FNC and TCs. The attention module 

lso yielded better classification performance (3.6% in ACC) com- 

ared with C-RNN. The HDLFCA based on ICA showed a little bet- 

er performance (85.3%) than fixed AAL (84.9%), this is likely due to 

he ability of ICA to capture variability in the components among 

ubjects. 

.2. Leave-one-site-out classification 

In the leave-one-site-out transfer classification, one imaging site 

as considered as the testing dataset while the other sites were 

sed for training, with 10% of the samples chosen randomly for 

alidation in the HDLFCA. The quantitative results on In-House 

ataset were shown in Table 4 , Table S3 and Fig. 2 C . We can draw

 similar conclusion as that in Section 3.1 . That is, compared with 

he conventional machine learning approaches (i.e., Random For- 

st, AdaBoost and SVM), the proposed HDLFCA largely improved 

he diagnostic performance, suggesting that automatically learn- 

ng high-level fMRI features is beneficial for SZ classification. Be- 

ides, HDLFCA resulted in ACC improvement at 5.7%, 4.7%, 3.9%, 

nd 2.6% respectively compared to single-feature-based deep learn- 

ng models (i.e., BrainNetCNN, DNN, C-RNN and C-RNN 

AM ). This 

emonstrated the superiority of integrating FNC and TCs. In addi- 

ion, from the Table 4 , the embedded attention module still yielded 

etter classification performance, which is consistent with the re- 

ults reported in Section 3.1 . It further indicated that it not only 

dentified the discriminative ICs but also improved the classifica- 

ion performance. The HDLFCA still outperformed cGCN, suggesting 

ur method are more powerful to capture functional connectivity 

nd dynamic brain activity underlying the fMRI data. 

.3. Most HC-SZ discriminative FNC 

The contribution of each FNC was rendered using the LRP al- 

orithm by propagating the correlation layer by layer. The top 50, 

0 and 100 contributing FNC features in the task of SZ diagnosis 

ere presented in the circle diagram ( Fig. 3 A), where the 50 ICs

ere divided into eight functional networks (Fig. S1). The discrim- 

native FNC showed diffuse patterns widely across the entire brain, 

mplying widely impaired brain regions in SZ patients. Despite the 

omplexity, we observed that default-mode networks with connec- 

ions to frontal, and attentional networks shared a high proportion 

n the top 50 contributing connectivity , which are reported to be 

ighly associated with SZ. In Fig. 3 A, the comparison of top 50 and

op 70 contributing FNC revealed a substantial increase in connec- 

ions within visual networks. Connections between frontal and de- 

ault mode networks, frontal and attention networks, and connec- 
7 
ions within visual networks indicated the most contributing influ- 

nce when presenting the top 100 contributing FNC , suggesting 

hat schizophrenia is characterized by impairments in high-level 

ognitive and emotional processing circuits. 

.4. Most discriminative independent components captured by 

ttention module 

The attention module can automatically identify discriminative 

rain regions by learning which regions to focus or suppress. An 

ttention value map with a 50 ×1 ×1 size was obtained for each 

ubject and the mean attention map was generated by averaging 

hem, where a higher value indicates the greater discrimination 

ower of the IC. To obtain more robust imaging markers, we re- 

eated the 10-fold cross-validation experiments 10 times (10 ∗10 

rained models in total) and counted the frequency of the top 

0 discriminative ICs. Fig. 3 B displays the frequency distribution 

istogram, where only ICs with an occurring frequency greater 

han 10% are shown. Fig. 3 B also displays the spatial maps of 

he top 10 discriminative ICs, in which the striatum, cerebellum 

nd anterior cingulate were highlighted as the three most SZ- 

iscriminating ICs by the attention module, suggesting that the 

ttention scheme can effectively extract useful information from 

hole-brain fMRI features. It should be noted that Fig. 3 B presents 

he group-discriminative ICs by averaging the attention maps for 

ach subject, but they are not totally the same across all subjects, 

or example, the same ICs may be emphasized differently, impli- 

ating the potential for individualized localization of brain regions. 

.5. Comparison with dynamic FNC features(dFNC) 

Since dFNC also simultaneously characterized functional depen- 

ency and temporal dynamics of spontaneous BOLD signal, we also 

ompared other deep learning methods using dFNC with our pro- 

osed HDLFCA, which also integrated dynamic FCs and TCs to im- 

rove classification performance. The dFNC was computed by the 

liding window method in steps of 1 TR. We conducted multi- 

le experiments under different settings, where the window length 

aries from the 30s to 70s at intervals of 10s (15-35 TR). A com- 

arison of classification performance was reported in Table 5 . More 

etails are available in the supplementary materials (Table S4 and 

igure S2). 

From Table 5 and Table S4, we can observe that the proposed 

DLFCA outperformed the best performing dFNC-based DL meth- 

ds in all metrics significantly (p < 0.01). For instance, in terms of 

CC, HDLFCA achieved an improvement of 4.6%, 4.9%, 4.5% and 

.5% compared with the best results achieved by LSTM, BiLSTM, 

RU, and C-LSTM respectively, suggesting the superiority of our 

ethod. The lower performance of C-LSTM compared to LSTM 

ay be attributed to the high dimension of the FNC vector (1225, 

ompared to 50 in previous TC-based methods), which largely in- 

reased the parameters of the model. Furthermore, GRU based on 
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Fig. 3. The most HC-SZ discriminative features localization. (A) Illustration of the top 50, 70 and 100 contributing functional network connectivities identified by LRP. Connec- 

tions between frontal network and default mode networks, frontal network and attention networks, and connections within visual networks indicate the most contributing 

influence, suggesting that schizophrenia is characterized by impairment in high-level cognitive and emotional processing circuits. (B) The frequency distribution histogram 

of top 10 ICs identified by attention module in 100 experiments. The striatum, cerebellum, anterior cingulate stand out as the top three most discriminating brain regions. 

Putamen-4 represents the ICs showing subcortical regions such as caudate and putamen (striatum). The spatial maps of all 50 ICs were displayed in Figure S1. 

Table 5 

Comparison with alternative classification methods using dynamic FNC on HC-SZ classification. 

Methods Feature ACC SPE SEN F1 AUC 

GRU TCs 76.9 ±0.5 ∗∗ 74.4 ±1.0 ∗∗ 79.3 ±0.7 ∗∗ 77.8 ±0.5 ∗∗ 84.3 ±0.3 ∗∗

LSTM DFNC 80.5 ±0.5 ∗∗ 81.5 ±1.2 ∗∗ 79.6 ±1.0 ∗∗ 80.6 ±0.5 ∗∗ 88.8 ±0.3 ∗∗

BiLSTM DFNC 80.2 ±0.5 ∗∗ 81.1 ±2.0 ∗∗ 79.4 ±1.6 ∗∗ 80.3 ±0.5 ∗∗ 88.7 ±0.4 ∗∗

GRU DFNC 80.6 ±0.9 ∗∗ 80.5 ±1.1 ∗∗ 81.1 ±2.3 ∗∗ 81.1 ±1.2 ∗∗ 88.7 ±0.6 ∗∗

C-LSTM DFNC 79.6 ±0.7 ∗∗ 80.2 ±2.0 ∗∗ 78.9 ±1.2 ∗∗ 79.7 ±0.6 ∗∗ 88.0 ±0.4 ∗∗

HDLFCA FNC + TCs 85. 1 ±0.4 82.8 ±0.8 87.3 ±0.8 85.6 ±0.3 92.1 ±0.2 

Notes: LSTM: Long short-term memory network; BiLSTM: Bidirectional LSTM; GRU: gated recurrent unit; C-L STM: CNN + L STM; ∗/ ∗∗

denote that the proposed HDLFCA method achieves significantly better performance than the listed ones with p = 0.05/0.01. 
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FNC outperformed the same neural network based on TCs signif- 

cantly, which only contains temporal dynamics of brain activity, 

uggesting the effectiveness to integrate brain connectivity and ac- 

ivity of rs-fMRI data. 

.6. Comparison with different DL architectures 

In this section, we compared the proposed C-RNN 

AM with eight 

lternative deep learning models in multi-site pooling experiments 

n In-House datasets. The results were reported in Table 6 . Consid- 
8 
ring the great power in sequence modeling of RNN and the rich 

emporal dynamics of brain activity in time series of BOLD-signal, 

e first directly applied simple RNN and GRU in the same settings 

o classify brain disorders. The results showed the GRU models 

chieved an improvement of 23.6% in ACC, possibly because simple 

NN is difficult to learn long-term dependencies due to the vanish- 

ng and exploding gradient problem ( Bengio et al., 1994 ) and the 

rain activity is characterized by long-range temporal dependence 

uch that signal fluctuations at the present time influence sig- 
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Table 6 

Performance comparison of different DL architectures on SZ classification based on multi-site pooling 

Methods Feature ACC SPE SEN F1 AUC 

S_RNN TCs 53.3 ±0.9 ∗∗ 43.7 ±1.1 ∗∗ 62.5 ±0.9 ∗∗ 57.7 ±0.8 ∗∗ 53.8 ±0.4 ∗∗

GRU TCs 76.9 ±0.5 ∗∗ 74.4 ±1.0 ∗∗ 79.3 ±0.7 ∗∗ 77.8 ±0.5 ∗∗ 84.3 ±0.3 ∗∗

C-MLP TCs 77.1 ± 0.4 ∗∗ 75.7 ±0.8 ∗∗ 78.4 ±0.7 ∗∗ 77.7 ±0.4 ∗∗ 86.7 ±0.3 ∗∗

S_C-RNN TCs 80.5 ±0.5 ∗∗ 79.4 ±1.0 ∗∗ 81.4 ±0.9 ∗∗ 80.9 ±0.5 ∗∗ 88.5 ±0.4 ∗∗

C-RNN TCs 82.5 ±0.9 ∗ 80.8 ±1.1 84.2 ±0.9 ∗ 83.1 ±0.8 ∗ 90.8 ±0.4 

AM_1 TCs 83.4 ±0.5 81.6 ±1.0 85.1 ±0.7 83.9 ±0.5 91.0 ±0.3 

AM_2 TCs 83.4 ±0.4 81.6 ±0.8 85.2 ±1.1 83.9 ±0.4 91.3 ±0.3 

AM_3 TCs 54.8 ±0.6 ∗∗ 54.4 ±0.6 ∗∗ 55.3 ±1.2 ∗∗ 55.5 ±0.8 ∗∗ 57.3 ±0.4 ∗∗

C-RNN 

AM TCs 83.5 ±0.5 81.5 ±0.9 85.4 ±0.5 84.0 ±0.5 91.4 ±0.3 

Notes: ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance with P value = 0.05/0.01. S_RNN: 

simple RNN. C-MLP: the convolutional layer (CON) has different kernel size as C-RNN and the fully connected layers was followed. 

S_C-RNN: the CON has fixed kernel size and the other architecture was the same as C-RNN. AM_1: the CON in AM was one kernel 

with 4 ∗1 size. AM_2: the CON in AM was replaced by the shared MLP, including three fully connected layers with 50, 10 and 50 

hidden nodes respectively. AM_3: a spatial-temporal attention module based on the proposed attention module (AM) in this work 

to emphasize important time points and regions simultaneously. 
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al dynamics up to several minutes in the future ( Dhamala et al., 

020 ; Guclu and van Gerven, 2017 ). The C-RNN further outper- 

ormed GRU and C-MLP, potentially because the convolutional and 

RU layers were responsible for capturing spatial and temporal 

nformation respectively. The C-RNN with multi-scale convolution 

ernel size outperformed the S_C-RNN with single-scale convolu- 

ion kernel, suggesting that extracting dynamics from a variety of 

imescales is useful in fMRI data. 

Moreover, we designed 4 variants of attention mechanism in- 

egrated into C-RNN models. The architectures were illustrated in 

ig. S5. Specifically, C-RNN 

AM achieved a light increase compared 

ith AM_1, suggesting capturing global relations between brain 

etworks is more effective than local relations. AM_3 performed 

orse than others, showing that the emphasizing important brain 

egions play an essential role in brain disorder classification. 

. Discussion 

In this study, we proposed a novel unified DL framework by in- 

egrating temporal coherence and dynamics effectively to classify 

rain disorders. The classification accuracy of 85.1% and 81.0% were 

chieved in multi-site pooling and leave-one-site-out respectively 

n the task of HC-SZ discrimination. Moreover, when using pub- 

icly accessible ABIDE dataset, ACC of 72.4% was achieved in the 

ulti-site pooling classification of HC vs. ASD, which significantly 

utperformed multiple single feature-based methods. The compet- 

tive result is comparable to, if not better than, the recent stud- 

es on large multi-site fMRI datasets ( Kim et al., 2016 ; Yan et al.,

019 ; Zeng et al., 2018 ). Additionally, LRP and an attention mod- 

le were introduced to identify the most discriminative FNC pat- 

erns and brain regions for SZ. To the best of our knowledge, 

his is the first attempt to integrate identification of discriminative 

rain regions and diagnosis of brain disorders into a unified frame- 

ork based on fMRI data using an attention mechanism-based 

etwork. 

Recently, numerous studies have applied deep learning meth- 

ds for SZ classification and achieved high performance. Compared 

ith previous studies ( Dakka et al., 2017 ; Rozycki et al., 2018 ;

kåtun et al., 2017 ), this work achieved an improvement ( > 5.0%) in

ccuracy on multi-site pooling and leave-one-site-out classification. 

he promising results may derive from the following aspects: First, 

e combined different powerful deep learning models to lever- 

ge complementary information between TCs and FNC, where the 

Cs neglects the functional dependency between brain regions and 

NC discards sequential temporal dynamics. The experimental re- 

ults demonstrated the superiority of combing multiple features. 

econd, the attention module helps to refine and optimize fea- 

ure representation by focusing on more important brain regions 
9 
nstead of the full feature. The experimental results also showed 

he attention module improved classification performance. Third, 

ince the convolutional neural network (CNN) is ‘deep in space’ 

nd RNN is ‘deep in time’, both of them were applied to make 

ull use of the spatial and temporal information underlying the 

pontaneous BOLD signal. Furthermore, to validate the superiority 

f our method, the HDLFCA was compared with other deep learn- 

ng methods based on dFNC, which also takes dynamic fluctuation 

nd temporal coherence into consideration. Our method achieved 

n improvement ( > 4.0%) of average accuracy. Importantly, the goal 

f our method is not only to focus on high performance, but also to 

rovide results that are interpretable and provide insight into the 

rain. The attention module provides an effective way to explore 

nderlying biomarkers in DL methods. It allows for the integration 

f discriminative ICs localization and SZ diagnosis into a unified 

ramework, since the isolated informative region identification may 

ead to suboptimal performance. What’s more, the discriminative 

Cs are not totally the same across all subjects, showing the im- 

ortance of individualized localization of brain regions associated 

ith schizophrenia. 

The results revealed that the attention module highlighted 

rain regions at the locations of the striatum, cerebellum and 

nterior cingulate. The striatum, including putamen and cau- 

ate, has been proved to play a vital role in the pathophysiol- 

gy of schizophrenia ( Yan et al., 2019 ). Compelling evidence has 

hown that the striatum was involved in cognition domains, in- 

luding motor, decision-making, and stimulus-response learning 

 Yager et al., 2015 ). Recently, numerous findings converged on 

vidence for both an increase in striatal dopamine and striatal 

opamine receptors. The dopaminergic hyperfunction in the stria- 

um may contribute to cognitive deficits in SZ ( McCutcheon et al., 

019 ). Moreover, the increase of D2 receptors was found to be pre- 

ictive for treatment response and the popular antipsychotics usu- 

lly blocks the dopamine D2 receptors in the striatum ( Li et al., 

020 ; Sarpal et al., 2016 ). Another highlighted component was the 

erebellum. Many studies showed significant evidence for cere- 

ellar abnormalities in SZ, such as impairment white matter in- 

egrity and blood flow decrease in the cerebellum during cogni- 

ion tasks( Andreasen and Pierson, 2008 ; Kim et al., 2014 ; Luo et al.,

018 ; Yan et al., 2021 ). In addition, the other important component 

dentified by attention module was located in the anterior cingu- 

ate cortex (ACC). Previous studies have demonstrated that a fail- 

re of functional ACC is associated with disturbed cognitive control 

nd working memory deficits in SZ greatly ( Fletcher et al., 1999 ; 

letcher et al., 1996 ) and SZ patients exhibit significantly reduced 

CC activation ( Schultz et al., 2012 ). Overall, the most group dis- 

riminative brain regions can be easily traced back with convincing 

iological interpretability, implying that the attention module em- 
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hasized important ICs effectively and our method showed great 

romise to identify potential imaging biomarkers. 

Although the proposed HDLCD achieved high performance in 

iscriminative ICs localization and psychotic disorder classification, 

everal limitations should be considered in the future. First, C- 

NN 

AM and DNN were trained independently and then their pre- 

ictions were fed into meta-learner to utilize complementary infor- 

ation between TCs and FNC, which makes the later fusion stage 

ouldn’t help refine feature representations in the first stage. A 

romising direction is to integrate the two stages into a purely 

nd-to-end framework to provide complementary guidance for 

ach other. Second, static FNC as the most commonly used func- 

ional connectivity feature, was combined with brain activity (TCs) 

s input features in this work. Nevertheless, it is interesting to in- 

estigate whether combining dynamic connectivity and brain ac- 

ivity can further advance classification performance in the future. 

. Conclusions 

In this work, we proposed HDLFCA, a unified framework that 

akes fully advantage of temporal coherence (FNCs) and time- 

arying fluctuations (TCs) jointly to classify psychiatric disorders 

ased on rs-fMRI data. The method was validated on both In- 

ouse SZ dataset (n = 1100) and the public ABIDE datasets 

n = 1552), with 2.8-8.9% increase compared to 12 popular clas- 

ifiers, suggesting the superiority of combining multiple features. 

o the best of our knowledge, this is the first attempt to introduce 

n attention module into a C-RNN based framework to improve 

he classification performance and automatically identify discrimi- 

ative brain regions. Such a method shows the potential for deep 

earning to provide utility for both predicting and understanding 

he healthy and disordered brain. 
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Abstract. Brain functional connectivity (FC) extracted from resting-
state fMRI (RS-fMRI) has become a popular approach for disease diagno-
sis, where discriminating subjects with mild cognitive impairment (MCI)
from normal controls (NC) is still one of the most challenging prob-
lems. Dynamic functional connectivity (dFC), consisting of time-varying
spatiotemporal dynamics, may characterize “chronnectome” diagnostic
information for improving MCI classification. However, most of the cur-
rent dFC studies are based on detecting discrete major “brain status”
via spatial clustering, which ignores rich spatiotemporal dynamics con-
tained in such chronnectome. We propose Deep Chronnectome Learning
for exhaustively mining the comprehensive information, especially the
hidden higher-level features, i.e., the dFC time series that may add criti-
cal diagnostic power for MCI classification. To this end, we devise a new
Fully-connected bidirectional Long Short-Term Memory (LSTM) net-
work (Full-BiLSTM) to effectively learn the periodic brain status changes
using both past and future information for each brief time segment and
then fuse them to form the final output. We have applied our method
to a rigorously built large-scale multi-site database (i.e., with 164 data
from NCs and 330 from MCIs, which can be further augmented by 25
folds). Our method outperforms other state-of-the-art approaches with
an accuracy of 73.6% under solid cross-validations. We also made exten-
sive comparisons among multiple variants of LSTM models. The results
suggest high feasibility of our method with promising value also for other
brain disorder diagnoses.

1 Introduction

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disease leading
to progressive cognitive and memory deficits. Early diagnosis of its preclinical
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stage, mild cognitive impairment (MCI), is of critical value as timely treatment
could be the most effective during this stage. Resting-state functional MRI (RS-
fMRI) provides an opportunity to assess brain function non-invasively and has
been successfully exploited to identify MCI [1]. To capture the time-varying
information brain networks, dynamic functional connectivity (dFC) was pro-
posed to characterize the time-resolved connectome, i.e., chronnectome, mostly
using sliding-window correlation approach [2,4]. While promising, many cur-
rent studies have not deeply exploited the rich spatiotemporal information of
the chronnectome and utilized it in classification. For example, many studies
focused on group comparison by detecting a set of discrete major brain status
via clustering time-resolved FC matrices and further calculating their occurrence
and dwelling time [4]. Inspired by the new finding that the brain dynamics are
hierarchically organized in time (i.e., certain networks are more likely to occur
preceding and/or following others [5]), we propose to learn diagnostic features
in an end-to-end deep learning framework to better classify MCI.

Recurrent neural networks (RNNs) is a powerful neural sequence learning
model for time series analysis. LSTMs are improved RNNs that can effectively
solve the “gradient exploding/vanishing” problem by controlling information
flow with several gates [6]. It has recently been demonstrated to be able to han-
dle large-scale learning in speech recognition and language translation tasks [7].
However, there is still a significant gap between brain chronnectome model-
ing and common time series analysis. Directly applying LSTM to dFC-based
MCI diagnosis is non-trivial: (1) Brain is extraordinary complex whose dynam-
ics could be substantially different from natural language interpretation. (2) The
background noise is usually more intense in the brain dFC signals, compared to
audio/video signals, making it very difficult to capture. (3) The brain may con-
tinuously use contextual information for guiding higher-level cognitive functions
rather than produce an output at the end of the time series with a strict direction.
Therefore, a general LSTM could not be suitable for brain chronnectome-based
classification. To solve this problem, we propose a new deep learning framework
that changes the traditional LSTM in two aspects. First, we create Full-LSTM
that connects the outputs of all cells to a “fusion” layer to capture a com-
mon time-invariant status-switching pattern, based on which the MCI can be
diagnosed. Second, to excavate the contextual information hidden in the dFC,
we further use a bidirectional LSTM (BiLSTM) to access long-range context in
both directions [8]. We hereby come out with an end-to-end chronnectome-based
classification model, namely Full-BiLSTM. The performance of our proposed
method has been compared with state-of-the-art methods on ADNI-2 database.
As the first “Deep Chronnectome Learning” study, we comprehensively com-
pared the performance of three variants of LSTMs and reported the effect of
different hyperparameters. The results support our hypothesis and significantly
improved MCI diagnosis.
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2 Methods

2.1 Computing dFC via a Sliding Window Method

Fig. 1. Overview of the Full-BiLSTM for MCI
classification.

For each subject, the
whole-brain time-varying
connectivity matrices are
computed based on
M(M = 116) ROIs from
the automated anatomi-
cal labeling (AAL) tem-
plate using a sliding win-
dow approach [3,4]. As
shown in Fig. 1, the aver-
aged BOLD time-series
Si in ROI i are first com-
puted. Then, the win-
dow {Wt} are generated
and applied to S = {Si},
where T is the total num-
ber of sliding windows.
Next, for each Wt, an FC
matrix Rt of size M ∗ M

that includes FC strengths between all pairs of Sit are calculated. Thus, for
each subject, a set of Rt(t = 1, 2, . . . , T ) are obtained, representing the sub-
jects’ whole-brain dFC. Due to the symmetry of each Rt, all FC strengths in
Rt among M ROIs corresponding to a window t are converted to a vector xt

with M(M − 1)/2 elements. Therefore, all the dFC time series from the kth
subject can be represented by a matrix Xk = [xk

1 , x
k
2 , . . . , x

k
t ] with a size of

T ∗ {M(M − 1)/2} and used as input to Full-BiLSTM classification model.

2.2 Fully-Connected Bidirectional LSTM (Full-BiLSTM)

Long Short-Term Memory (LSTM). LSTMs incorporates recurrently con-
nected units, each of which receives an input ht−1 from its previous unit as well
as the current input xt for the current time point t. Each unit has its memory
updating the previous memory ct−1 with the current input modulation. The net-
work takes three inputs: xt, ht−1, and ct−1, and has two outputs: ht (the output
of the current cell state) and ct (the current cell state). Three gates separately
controls input, forget, output. The unit can be expressed as:

Input Gate : it = σ(Wxixt + Whiht−1 + bi) (1)

Forget Gate : ft = σ(Wxfxt + Whfht−1 + bf ) (2)

Output Gate : ot = σ(Wxoxt + Whoht−1 + bo) (3)
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Input Modulation : gt = φ(Wxcxt + Whcht−1 + bc) (4)

Memory Cell Update : ct = it � gt + ft � ct−1 (5)

Output : ht = ot � tanh(ct) (6)

Specifically, the input gate it controls how much influence the inputs xt and
ht−1 exerts to the current memory cell (Eq. 1). The forget gate ft controls how
much influence the previous memory cell ct−1 exerts to the current memory
cell ct (Eq. 2). Output gate controls how much influence the current cell ct has
on the hidden state cell ht (Eq. 3). The memory cell unit ct is a summation
of two components: the previous memory cell unit ct−1, which is modulated
by ft and gt (Eq. 4), and a weighted combination of the current input and the
previous hidden state, modulated by the input gate it (Eq. 5). Likewise, cell state
is filtered with the output gate o(t) for a hidden state updating (Eq. 6), which
is the final output from an LSTM cell. With the inputting dFC time series, Wx·
matrices (containing weights applied to the current input) and Wh· matrices
(representing weights applied to the previous hidden state) can be learned, b·
vectors are biases for each layer, σ is sigmoid, φ is tanh function, and � denotes
element-wise multiplication.

Bidirectional LSTM (BiLSTM). BiLSTM is an effective solution that gets
access to both preceding and succeeding information (i.e., context) by involving
two separate hidden layers with opposite information flow directions [9]. For
a brief description, we denote a process of an LSTM cell as H. BiLSTM first
computes the forward hidden

−→
h and the backward hidden sequence

←−
h separately

(Eqs. 7–8), and then combines
−→
ht and

←−
ht to generate the final output yt (Eq. 9).

The Wx· and Wh· matrices in (Eqs. 7–8) are the same as those in (Eqs. 1–4).
The W−→

h y
(representing weights applied to the forward hidden state) and W←−

h y

(representing weights applied to the backward hidden state) are learned with
the inputting dFC time series. b· vectors are biases for each layer.

Forward LSTM :
−→
h t = H(W

x
−→
h

xt + W−→
hh

−→
h t−1

+ b−→
h

) (7)

Backward LSTM :
←−
h t = H(W

x
←−
h

xt + W←−
hh

←−
h t−1

+ b←−
h

) (8)

Combined Output : yt = H(W−→
h y

−→
h t + W←−

h y
←−
h t

+ by) (9)

Full-BiLSTM. The traditional BiLSTM classification model usually uses the
final state yT for classification [8]. However, this is insufficient for chronnectome-
based diagnosis, because brain may continuously use contextual information to
facilitate higher-level cognition and guide status transition, rather than produc-
ing a single output at the end of the scanning period. Therefore, the outputs
of every repeating cell could be of equally important use and should be con-
catenated into a dense layer Y = [y1, . . . yt, . . ., yT ] (see “Concatenation Layer”



Deep Chronnectome Learning via Full-BiLSTM for MCI Diagnosis 253

in Fig. 1).). With this layer, we may abstract a common and time-invariant
dynamic transition pattern from all the BiLSTM cells which may represent a
constant “trait” information of each subject, instead of the continuously varying
brief brain status. While the latter could be of great use in previous status-
based studies such as those used Hidden Markov Chain for status transition
probability modeling in group-level comparison studies [5], it will inevitably lose
the precious temporal information which could capture more subtle individual
differences for the more challenging disease diagnosis studies. In our framework
for MCI diagnosis, the dense layer Y is followed with softmax layer to get the
final classification result.

3 Experiments and Results

3.1 Data Preprocessing

In this study, we use the publicly available Alzheimer’s Disease Neuroimaging
Initiative dataset (ADNI) to test our method. As shown in Table 1, 143 age- and
gender-matched subjects (48 NCs with 164 RS-fMRI scans, and 95 MCIs with
330 RS-fMRI scans) were selected from ADNI-2 database. The goal of ADNI-
2 study is to validate the use of various biomarkers including RS-MRI to find
the best way to diagnose AD at pre-dementia stage. Each RS-fMRI scan was
acquired using 3.0T Philips scanners at different medical centers. All the data
were carefully reviewed by the quality control team in Mayo Clinic. ADNI is to
date the largest, multi-site, rigorously controlled early AD diagnosis data. The
RS-fMRI data were preprocessed following the standard procedure [1].

3.2 Dynamic Functional Connectivity Matrix

In this experiment, the window length was 90s (30 volumes) as suggested by pre-
vious dFC studies [4]. The window slides in a step of 2 volumes (6s), resulting in
54 segments of BOLD signals. For each subject and each scan, 54 FC matrices
were obtained, reflecting the chronnectome. The upper half of the matrix con-
taining 6670 unique dFC links were used and then reshaped into Xk with the
size of 54 ∗ 6670.

3.3 Data Augmentation
Table 1. Demographic information.

NC MCI

Number of scans 164 330

Age(mean(±std, yrs)) 75.4± 6.2 72.0± 7.5

Gender(M/F) 72/92 178/152

Training deep learning models requires
a large number of samples. Fortunately,
only part of the dFC time series might
be sufficient for discriminating MCIs
from NCs because the FC dynamics
could happen in a very brief period [5]. This allows us to conduct data augmenta-
tion to increase the sample size. Specifically, for each Xk, a continuous submatrix
of length 30 were cropped as a new sample. By using a sliding window strategy
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with a stride of 1, the original Xk can be augmented for 54 − 30 + 1 = 25 times
(augmented by a factor of 25). The label of the augmented data from the same
subject was kept the same. Of note, all augmented sequences belonging to the
same subject were used solely in the training, or validation, or testing phase. In
the testing phase, the predicted labels for all the augmented data from the same
subject was derived with majority voting to determine the final label for this
subject.

3.4 Full-BLSTM Parameters and Training Strategy

The Full-BiLSTM model was trained and evaluated using Keras. Data was split
into 80% for training and 20% for testing (5-fold cross-validation). 10% of sam-
ples from training data were further selected for validation to monitor the train-
ing procedure. Training was stopped when the validation loss stopped decreasing
for 20 epochs or when the maximum epochs had been executed. The testing data
was applied to the trained model to evaluate the performance. The model was
trained for minimizing the weighted cross-entropy loss function using stochastic
gradient descent (SGD) optimizer. The learning rate (lr) was started from 0.001
and decayed over each update as follow: lrt = lrt−1/(1 + decayrate ∗ epochs).
The decayrate was 10−6, and the maximum epochs was 200. The batch size was
32. The weights and biases were initialized randomly. To improve the general-
ization performance of the model and overcome the overfitting problem, we used
a dropout method (dropout = 0.5) and l1norm regularization (l1 = 0.0005).

3.5 Method Comparison

As dFC is novel in this field, the disease diagnosis works using dFC are quite
limited. We compared our approach against various classifiers commonly used.
The majority of the dFC studies focus on brain statuses detected by clustering, or
the temporal variability of dFC series. Therefore, in the competing methods, we
also use these two types of the dFC features for MCI classification. In summary,
we compared our method with the classification models using: (1) static FC
(sFC); (2) dFC-based brain statuses [4]; and (3) dFC variability [1], as detailed
below.

sFC. The traditional FC method used in most of the FC studies are based on
Pearson’s correlation of full-length BOLD signals. After building sFC matrix, an
SVM classifier is trained based on the sFC strengths.

Status-Based. Group-level chronnectome status is identified by using k-means
clustering with all of the dFC matrices in the training data. The occurrence
frequency of each status is computed to as features. Then, an SVM classifier is
constructed based on the frequency features of all status.
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Variability-Based. Based on the dFC matrices, the quadratic mean value is
computed for each dFC. A total of 6670 features are generated for each subject
representing the fluctuation of the signals. The features are further reduced using
two-sample t-test. An SVM classifier is constructed based on the dFC variability
features.

Table 2. Performance of different methods in MCI/NC classification.

Method ACC(std)% SEN(std)% SPE(std)% f1(std)% AUC(std)%

Static FC + SVM 61.5(10.0) 74.0(9.2) 41.7(14.0) 70.9(8.2) 64.2(10.8)

dFC-variability 54.8(12.9) 54.4(12.3) 56.8(19.1) 60.5(12.3) 49.0(17.0)

dFC-status 61.3(10.0) 70.8(12.2) 47.2(13.6) 69.9(8.6) 61.9(15.9)

Full-LSTM32 71.9(5.9) 72.3(7.9) 70.5(15.1) 76.2(5.3) 75.9(5.8)

Full-BiLSTM32-Stack 69.0(5.0) 66.7(4.7) 73.0(9.2) 73.1(3.5) 79.2(2.7)

BiLSTM32-Last 71.0(10.3) 76.8(9.6) 60.9(12.8) 76.7(8.8) 75.9(6.0)

Full-BiLSTM32 73.6(3.7) 73.9(10.1) 73.5(7.3) 77.6(4.4) 79.8(6.9)

Notes: Blue-colored methods are the traditional methods; Methods in italic are LSTM-
based methods; Our method is in bold italic; Red italic indicates the model without
bi-directional LSTM or without Full-LSTM

The performance comparison results are summarized in Table 2 and Fig. 2
showing the ROI curves of all methods. Because of sample imbalance, the area
under the ROC curve (AUC) was used as the main metric for comparing the
performance of all the methods. Our method achieved 79.8% in AUC and signifi-
cantly outperformed the traditional sFC and dFC methods. The dFC variability
method achieved the lowest result, which could be caused by the severe noise in
dFC time series. In contrast, our method could learn the intrinsic brain status
transition, thus is more robust to such noise.

Fig. 2. ROC curves of different
methods.

Fig. 3. Effect of different hidden units

To validate the advantage of Full-BiLSTM, we tested three other LSTM-
based architectures. The BiLSTM Last model uses the output of the last
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BiLSTM cell for classification, as used in the traditional sequence processing
studies. The Full-LSTM uses the same architecture as our method, but with
uni-directional LSTM cells. To investigate whether a deeper BiLSTM layer could
increase the performance, the third model is built using stacked Full-BiLSTM
(two layers). All these three models use the same parameters as our Full-BiLSTM
method. As shown in (Fig. 2), our model still outperformed all these three LSTM-
based competing models. Specifically, we observed that (1) BiLSTM outperforms
uni-directional LSTM; (2) Full-BiLSTM performs better than BiLSTM Last;
(3) A deeper model does not improve the final performance. In addition, we also
compared the performance with and without data augmentation, and found that
the accuracy was decreased by 2% without data augmentation. Furthermore, the
number of hidden nodes in LSTM may directly affect the learning capacity of an
LSTM network. Therefore, we compared the performance of Full-BiLSTM mod-
els with a varying number of hidden units, i.e., 16, 32, 64. As shown in Fig. 3,
the Full-BiLSTM model with 16 hidden nodes has decreased performance and
increased performance variability, compared to the Full-BiLSTM model with 32
hidden nodes. It is likely that 16 hidden units are too limited to store the sequen-
tial information of the dFC process. The model with 64 hidden nodes also has
suboptimal performance, which could be attributed to overfitting.

The results together indicate that data augmentation and the choice of
network structure are crucial for training an effective dFC-based classification
model. Most notably, this is the first attempt to use a deep learning framework
for individualized disease diagnosis based on dFC. Our results indicate that a
sequence model can take advantage of more series information from dFC than
the conventional methods. It is also worth noting that our model can be applied
to other brain disorder diagnoses.

4 Conclusions

In this study, we proposed a new deep learning framework, a Full-BiLSTM model,
for brain disease diagnosis using dynamic functional connectivity. To the best
of our knowledge, this is the first attempt to propose the “deep chronnetome
learning” framework and to prove its feasibility and superiority in a challenging
MCI diagnosis task by using time-varying functional information. Comprehen-
sive comparisons among different architectures of the LSTM model were con-
ducted, and the insightful discussions on the influence of the hyperparameters
were provided. In summary, the proposed model can not only effectively cap-
ture the trait-related brain dynamic changes from the spatiotemporally complex
chronnectome, but also can be applied to improve classification of other brain
disorders, which shows great promise to be used as a powerful tool to detect
potential biomarkers in the community.
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